

Measurement of B_c^{\pm} Mass and Lifetime at LHCb

Wenbin Qian on behalf of the LHCb Collaboration

LAL, Orsay, France Tsinghua University, Beijing, China

EPS HEP 2009, 16-22 July 2009, Krakow, Poland

Outline

- **F** Introduction
- ► B_c[±] mass measurement
- **►** B_c[±] lifetime measurement
- **•** Other B_c studies in LHCb
- **Summary**

Introduction to B_c Physics(1)

Bc System:

Heaviest open flavour mesons (top quark lifetime is too small)

Heavy quarks (b and c), precise QCD calculations

Discovered in 1998 (Tevatron), many properties are still unknown

B_c^{\pm}

 $I(J^P) = 0(0^-)$ L.J. P need confirmation.

Quantum numbers shown are quark-model predicitions.

Mass $m = 6.277 \pm 0.006$ GeV (S = 1.6) Mean life $\tau = (0.453 \pm 0.041) \times 10^{-12}$ s

 B_c^- modes are charge conjugates of the modes below.

			P
B_c^+ DECAY MODES $\times B(\overline{b} \rightarrow B_c)$	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)

The following quantities are not pure branching ratios; rather the fraction $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c)$.

$J/\psi(1S)\ell^+ u_\ell$ anything	$(5.2^{+2.4}_{-2.1}) \times 10^{-5}$			-
$J/\psi(1S)\pi^+$	< 8.2	$\times 10^{-5}$	90%	2372
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}$	< 5.7	$\times 10^{-4}$	90%	2352
$J/\psi(1S) a_1(1260)$	< 1.2	$\times 10^{-3}$	90%	2171
$D^{*}(2010)^{+}\overline{D}^{0}$	< 6.2	imes 10 ⁻³	90%	2468

B_c[±]**Production**

> Main Process: $gg \rightarrow B_c^+ + \bar{c} + b$ with production fraction ~ 0.1% of other B mesons (B⁰, B⁺, B_s⁰)

> Production in LHC:

 $\sigma(B_c^{\pm}) \sim 0.4 \mu b$ at 14 TeV pp collision $\sigma(B_c^{\pm})_{\text{LHC}} / \sigma(B_c^{\pm})_{\text{Tevatron}} \sim O(10)$

➤ B_c[±] cross section measurement → Production mechanism understanding (For example, Colour octet, colour singlet)

EPS HEP 2009, 16-22 July 2009, Krakow, Poland

Introduction to Bc Physics(2)

B_c^{\pm} Mass

B_c[±] Lifetime and Branching Ratio

> B_c[±] lifetime measurement Dynamics of heavy quark decay

B_c[±] decay branching ratios few decay modes observed B_c system mass spectrum
Quark model and pQCD test

> Only B_c^{\pm} mass measured, Compatible with calculation

> Mass measurement errors are of the Same order than lattice QCD

Sum Rules $\tau = 0.48 \pm 0.05$ ps D0 $\tau = 0.448^{+0.038}_{-0.036} \pm 0.032$ ps CDF $\tau = 0.463^{+0.073}_{-0.0655} \pm 0.036$ ps

 $\underline{B_c^{\pm}} \rightarrow J/\psi(\mu^+\mu^-)\pi^{\pm}$

EPS HEP 2009, 16-22 July 2009, Krakow, Poland

LHCb Performance

Event Selection and Yield

> Additional impact parameter cuts and *P_t* cuts

m (µ µ)

B_c[±] Mass Measurement

Mass measurement sensitivity is estimated by unbinned likelihood fit with MC sample corresponding to 1fb⁻¹ of LHCb data:

> Signal events are obtained from full MC simulation (Gaussian)

> Background generated by toy MC reproducing behaviour from full MC sample (Linear function)

> J/ ψ mass constraint fit to improve B_c^{\pm} mass resolution $M(B_c^{\pm}) = 6399.6 \pm 1.7 (stat.) MeV/c^2$ (input: <u>6400 MeV/c^2</u>)

EPS HEP 2009, 16-22 July 2009, Krakow, Poland

B_{c}^{\pm} Lifetime Fit: Combined Fit with Mass

 $\mathbf{F}(t, mass, \sigma) = f \times (\mathbf{E}(t, \tau) \otimes \mathbf{G}(t, \sigma, s)) \times \underline{\varepsilon(t)} \times \mathbf{M}(mass) + (1 - f) \times \mathbf{Bkg}(t, mass)$

Background: From mass sidebands Signal Shape: $E(t,\tau) \otimes G(t,\sigma,s) \times \varepsilon(t)$ **:**

 \succ E(*t*, τ) is an exponential dist. with lifetime τ

> $G(t,\sigma,s)$ is resolution function with σ and scale factor s

Acceptance function: ε(t) ➤ Not flat over t because of lifetime cuts to reduce prompt background ➤ Efficiency from MC ➤ Modelled by (at)ⁿ/(1+(at)ⁿ)

Robustness Study for Lifetime Fit

 $pullMean = 0.004 \pm 0$ pullSigma = 1.0122 ± 0.00 1000 lumber of 500 Pull of $\tau(B^*)$ 0.0 Arbitrary 0.03 0.02 0.0 10000 p_[MeV/c]

Effect from B_c[±] P_t distribution
 P_t dist. is unknown and difference
 between MC and data could lead to a
 bias in lifetime

Constraints Repeating the measurement using $B^{\pm} P_t$ spectrum for B_c^{\pm} gives a bias around <u>0.023 ps</u> because of changes in efficiency

B_c^{\pm} Lifetime Fit: Simultaneous Fit over P_t Bins

> Simultaneous fit over $2 P_t$ bins adopted

Solution Minimize effect from P_t , bias reduced from <u>0.023 ps</u> to <u>0.004 ps</u>

Improve significance of signal (Different Background level over *P_t*)

➤ Final lifetime value <u>τ = 0.438±0.027(stat.) ps</u> (input:<u>0.46 ps</u>)
 ➤ Better systematic error control than Tevatron channel

Other B_c Topics in LHCb

Differential cross section measurement

- $> B_c^{\pm} \rightarrow J/\psi(\mu^+\mu^-)\mu^{\pm}v_{\mu}$
 - 𝔅 10 times more statistic than B_c^{\pm} →J/ψ(µ⁺µ⁻)π[±]
 - Candidate for early lifetime measurement at LHCb
 - Pre-look: ~5k events for 1fb⁻¹ with B/S~11
- > B_c excited states
 ③ 16 states below BD threshold
 ③ Radiative decays of excited
 states IIII QCD sum rules test
- > B_c[±]→B_s⁰ π[±]
 Self-tagging channel

Summary

With 1fb⁻¹ data, for channel $B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$ in LHCb

- > Around 310 events expected with B/S <2</p>
- **Statistical error around 1.7MeV**/*c*² for mass measurement
- > Simultaneous fit over P_t bins for lifetime
- > Statistical error for lifetime measurement around 0.027 ps with better systematic error control
- > Other studies in progress

Thank You for Your Attention