

Global searches at the Tevatron

Peter Renkel: Southern Methodist Uni. on behalf of D0 and CDF Collaborations. July 2009

Any sign of new physics in Tevatron data?

- Do we see what we expect from Standard Model?
 - Is this excess statistically significant?
 - Do we correctly model our detector/physics?
 - New Physics?
- Look in all Tevatron data
 - Split the Tevatron data into many final states
 - For each final state, examine multiple test distributions
 - If for a particular final state/test distribution see an excess, ask questions

Excess in data. New Physics? Detector modeling?

 General, allows to analyze many final states, however not as sensitive as dedicated approaches

Example: D0 fit factors

- Fit basic distributions (like objects p_T , η , ϕ) simultaneously and use more complex variables to check.
- 7 inclusive final states
 - ee, eµ, µµ, e(veto on second lepton), µ(veto on second lepton), eT, μ T
 - Tails are out of the fit

Basic variable

Variable to check

- Divide data into exclusive final states
 - Based on high p_T objects
 - Jets, b-jets, electrons, muons, taus, MET
- For each final state and for each distribution, check:
 - Data/MC agreement
 - In number of events
 - In shape using Kolmogorov-Smirnov probabilities
 - Should account for large number of final states/distributions (trial factor)

Probability to see the final state as unlikely as state *i* with probabilitity p_i : $\tilde{P} = 1 - \prod_i (1 - p_i)$

 \tilde{P} < 0.001 corresponds to 3 σ deviation

Vista results

- Total final states 180
 Discrepant final states 4
- Total distributions 9335
 Shape discrepancies 24

Modeling issues

- η dependent trigger efficiencies
 - µ + jets + MET
- Resolutions for high p_T muons
 - μμ + MET
- Jets fake photons
 - γ states

DØ Final State Population Discrepancies	σ After Trials Factor
$\mu + 2 ext{ jets} + E_T$	9.3
$\mu + \gamma + 1 \text{ jet} + \not\!\!\!E_T$	6.6
$\mu^{\pm}\mu^{\mp} + E_T$	4.4
$\mu^{\pm}\mu^{\mp} + \gamma$	4.1

Total final states – 399
Discrepant final states – 0

- Global fit factors
- Total distributions 19650
- Shape discrepancies 555
- Modeling issues QCD modeling

Vista shape agreement

Each entry in a histogram corresponds to the deviation for a distribution

D0: no high σ tail tail since only leptonic final states are considered

CDF: high σ tail (QCD)

High p_T tails. Sleuth

- Merge Vista final states
 - Lepton universality
 - Charge conjugation
- Search for Data excess in Σp_T
 - CDF includes unclustered scalar E_T
- Cut $\Sigma p_T > C_0$ that gives the most significant excess
- Correct for the trial factors

D0: $e\mu$ final state discrepant after trials (muon high p_T resolution)

CDF: SS final states after trials – 2 σ . Interesting, but not a discovery 8

Tests of the method

- Are we able to re-discover tt pairs?
 - Remove tt MC
 - Run SLEUTH
- Obvious discrepancy shows that SLEUTH can re-discover top pairs.

tt included

tt not included

P̃~1.6*10⁻⁻⁷ << 10⁻⁻³

Bump hunter

- Search for narrow resonances in mass distributions
- Width of search window 2 * detector resolution
 - At least 5 data events required
 - Side bands consistent
 - Correct for trial factors

One bump beyond thresholds (light jet emission?)

Most discrepant SLEUTH final states

DO	CDF
<i>l</i> + <i>l</i> ' - + MET	<i>l</i> + <i>l</i> * +
<i>l</i> +MET	l+ l' + + jj + MET
I+ I''-	$l^+ l^+ + MET$
$l^+ \tau^- + \mathbf{MET}$	<i>l</i> + <i>l</i> ' - <i>l</i> + + MET
$I^+\tau^+$	

Only one D0 final state passes the threshold of 3σ

- Performed Model-Independent search in D0 and CDF data
- Most states agree after trials
- The discrepant states/distributions are most likely due to modeling issues
- CDF Bump Hunter search for mass resonances
 - No discoveries
- SLEUTH search for high p_T tails.
 - One D0 excess most probably due to muon resolutions modeling
- More luminosity to be analyzed

Backup

Most discrepant states

Final State	\mathcal{P}
$\ell^+\ell'^- + MET$	2.9 E-6
$\ell + MET$.00082
$\ell^+\ell'^-$.0031
$\ell^+ \tau^- + \text{MET}$	0.006
$\ell^+ \tau^+$	0.0066

Preselection and Corrections

- Alpgen and PYTHIA
- Multijet from Data

- Leptonic final states
- Channel specific kinematic cuts
- Collaboration-wide corrections
 - K-factors
 - Trigger efficiencies
 - Lumi reweighting

- PYTHIA and MadEvent
- Multijet from MC

- Channel specific kinematic cuts
- Corrections later at Vista level
 - Constrained global fit
 - 43 fit parameters

Example: Channel specific cuts for D0

MIS Final State	Object	Min p_T (GeV)	Max $ \eta $
	е	35	1.1
$e + jets + X^a$	jet	20	2.5
	MET	20	NA
	μ^h	25	1.7
$\mu + \text{jets} + X^b$	jet	20	2.5
	MET	20	NA
$ee + X^c$	е	15	1.1
$\mu\mu + X^d$	μ^h	15	2.0
$\mu \tau + \mathbf{X}^e$	μ^h	15	2.0
	au	15	2.5
$e\tau + X^f$	е	15	2.5
	au	15	2.5
	μ^h	15	2.0
$\mu e + X^g$	е	15	2.5