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@ Threshold expansion:
Ref)(s ~ 4) = (s — 4)* [, + b)(s — 4) +...]
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. . . - . ... what do we need and what we propose?
Dispersion relations with imposed crossing symmetry conditit )
historical review

threshold behavior of output amplitudes

threshold behavior of output amplitudes

@ Threshold expansion:
Ref)(s ~ 4) = (s — 4)* [, + b)(s — 4) +...]
@ Let's compare the Roy’s and GKPY equations:

Wave | Thr. exp | STroy | KT&DTrey | STekey | KT&DTgkpy
SO a) a) +Cso(s—4) | Bso(s—4) | aJ+5a3 | aso+ Bso(s —4)
P 0 Ce(s—4) | Bpa(s—4) | a— %a% apy + Bpi(s — 4)
S2 a3 a2+ Csy(s—4) | Bsa(s—4) | aJ+ 3a2 | asy+ Bsa(s —4)
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. . . - . ... what do we need and what we propose?
Dispersion relations with imposed crossing symmetry conditit )
historical review

threshold behavior of output amplitudes

threshold behavior of output amplitudes

@ Threshold expansion:
Ref)(s ~ 4) = (s — 4)* [, + b)(s — 4) +...]
@ Let's compare the Roy’s and GKPY equations:

Wave | Thr. exp | STroy | KT&DTrey | STekey | KT&DTgkpy
SO a) a) +Cso(s—4) | Bso(s—4) | aJ+5a3 | aso+ Bso(s —4)
P 0 Ce(s—4) | Bpa(s—4) | a— %a% apy + Bpi(s — 4)
S2 a3 a2+ Csy(s—4) | Bsa(s—4) | aJ+ 3a2 | asy+ Bsa(s —4)

@ so, in GKPY equations necessary are mutual cancellations of constant terms in
the P-wave and partial cancellations in the S-waves.

Ow 18.07.2009, page 11



numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

phase shifts for the SO-wave

1/2 m2
@ for mrr < 932 MeV: coté(s) = 52_ks >
— 2%
2
% _4By+B 2

— — — —— e e w(s Bow(s ,
as — |5 + Bo+ Baw(s) + Baw(s)
mb 8 l Jﬂﬁ ] z9 ~ m, — Adler zero,
2of [~ Kaminkiaal. - E

C 4 Grayer et d. Sol.B (Hyamset a) % ]
J10F | * Hyamsetd. () E

[ |— Constrained Fit to Data (CFD) % 1
180 |~ Unconstrained Fit to Data (UFD) * A
1505— é
120 =

[ ) J‘i,H E

2 it 1

3 i E

ko B

b ey

400 600 800 1000 1200 1400
s*2 (Mev)
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

phase shifts for the SO-wave

/2 m?
@ for mrr < 932 MeV: coté(s) = S i
~ 2%
2
20 2

Bo + Biw(s) + Bow(s)?],
as — |5 + Bo+ Baw(s) + Baw(s)
mb 8 l Jﬂﬁ% ] Zo ~ M, « Adler zero,

E e ] : E S—/So—s
wop |7 g?;g%;ggolﬁmyansaa‘) % 1 @ s — W(S) = \/_70, sg = 1.45 GeV,
210F | * Hyamsetd. () E VS+4/50—s

[ |— Constrained Fit to Data (CFD) % * 1
150} —— Unconstrained Fit to Data (UFD) {
1500 E
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: i ;
I i z
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

phase shifts for the SO-wave

/2 m?
@ for mrr < 932 MeV: coté(s) = S i
— 2%
2
Z

o {mﬂoﬂwowlw(s)wzw(s)z,
m; 50 l Jﬂﬁ% 7 Zo ~ M, « Adler zero,
240? : g?;g%;géblﬁmyanseta‘) % 7 @ s — W(S) = gi\/— “?f, sg = 1.45 GeV,

u = Hyamseta. (- 4 —
210:7 —_ ans(ra:ed é\tl)o Data (CFD) % * 7: 0 )
190 | — Unconstained Fit to Data (UFD) 1 @ above 932 MeV: K-matrix approach,
1500 E
120F 4

of b ]
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

phase shifts for the SO-wave

/2 m?
@ for mrr < 932 MeV: coté(s) = S i
~ 2%

2
[ 2 _ 4 By + Byw(s) + Bow(s)?|,

300? T T T T } i mr /s
ol 30 l Hﬁ% ] Zo ~ m, — Adler zero,
240? . g?;g%;géblﬁmyanseta‘) % 7 @ s w(s) = L ‘/5075, sp = 1.45 GeV,
g T . | ; VStV
180f | Unconstrained it 0 Data (UFD) * 1 @ above 932 MeV: K-matrix approach,
15@? — @ Matching point at 932 MeV,
120 =
sof ) JA’H’ E
g 1t ]
oF i E
0k E
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400 600 800 1000 1200 1400
s*2 (Mev)
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

phase shifts for the SO-wave

/2 m?
@ for my, < 932 MeV: cotd(s) = S i
~ 2%
2
wk T f i |:mjo\@+BO+Blw(5)+52W(S)2,
o 8" %Jﬂﬁ% TW Zp ~ My «— Adler zero,
200F [+ Kaminsd et 3 7 S*)W(S): \/5*7\/50_*5 s 145 GeV’

[ | « Grayereta. Sol.B (Hyamsetal) %
210 | * Hyamseta.(—) 3

[ |— Constrained Fit to Data (CFD) 1
180F |— Unconstrained Fit to Data (UFD) 1

V5+4/s0—s’
above 932 MeV: K-matrix approach,
Matching point at 932 MeV,
Fits: FDR + sum rules + Roy + GKPY + exp.

5 &
T
==
=
Loval
®© 66 ¢

%o i E data, 7 waves (S — G), 52 parameters,
6ol }’{T B R. Kaminski, J. Pelaez and F. Yndurain, "The
200 f E pion-pion scattering amplitude IlI", Phys. Rev.
I R R R D77, 054015 (2008),
400 600 8(1)2 1000 1200 1400
s (Mev)
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

phase shifts for the SO-wave

/2 m?
@ for mrr < 932 MeV: coté(s) = S i
— 2%
wf \ { i {mm@JrBoJrBlw(s)JrBzw(s) ,
mb 8 %ﬁﬁ% ] Zo ~ M, « Adler zero,
S B T - k 1@ sw(s)= VRS o 145Gey
w | EHET Lo o RO
190 | — Unconstained Fit to Data (UFD) * 4 @ above 932 MeV: K-matrix approach,
150F 4 @ Matching point at 932 MeV,
20 ; JA’H’ 1 @ Fits: FDR + sum rules + Roy + GKPY + exp.
s0f it ] data, 7 waves (S — G), 52 parameters,
c0f ‘{T E R. Kaminski, J. Pelaez and F. Yndurain, "The
o ft E pion-pion scattering amplitude IlI", Phys. Rev.
R R T T BT D77, 054015 (2008),
400 600 800 1000 1200 1400 i X i i
&2 (Mev) @ main point of discussion between Bern and
Madrid group: errors and SO phase shift at
800 MeV

inski, IFJ PAN, 6w, Poland Ow 18.07.2009, page 12



numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

Decomposition of Roy’s and GKPY egs: S0O-wave

4 TrrrrrTrrTTT T T T T T T T T 1.0 L L I I DR
: S0-wave, Roy equation ] : SO0-wave, GKPY equation :
L ST L 4
2 r 4 05 | b
N [ [ ]

(aY
N L L 4
o L L 4
80 r 4 0.0 s
2] r L 4
& r r 7]
> L L 4
w L L 4
-2 - 4-05 - :
—4 7\ PN T T I BTN AR \7 -1.0 7\ v b b b b e \7
0 10 20 30 40 50 60 0 10 20 30 40 50 60
s (m %) s (m_?)
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

Decomposition of Roy’s and GKPY egs: S0O-wave

4 rTrrrTprTTTp T T T T T T T T T T T ]10 LR L L B B
: S0-wave, Roy equation ] : SO0-wave, GKPY equation :
i ST i ]
2 r 4 05 - B
Y [ [ ]
o
Q [ [ i
S [ [ i
£ 0 4 0.0 -
48] r L d
N: B N 7
N L L 4
H!l] L L 4
-2 1-0.5 |- -
_47\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7_]1.07\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7
0 10 20 30 40 50 60 0 10 20 30 40 50 60
s (m ?) s (m ?)
I _ /s I 2i5) I ~
Q fi(s) = 5vea [ L(s)e e(s) — 1] — Ref,(s) should be smaller than ~ 0.6
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

Decomposition of Roy’s and GKPY egs: S0O-wave

4 TrrrrrTrrTTT T T T T T T T T 1.0 L L I I DR
: S0-wave, Roy equation ] : SO0-wave, GKPY equation :
i ST i ]
2 r 4 05 | b
N [ [ ]
(aY
N L L 4
< r 8 4
g0 4 0.0 :
2} r L 4
& r r 1
5 L L 4
) L L 4
-2 - 4-05 - :
—4 7\ PN T T I BTN AR \7 -1.0 7\ v b b b b e \7
0 10 20 30 40 50 60 0 10 20 30 40 50 60
s (m %) s (m_?)
@ fi(s) = 2|\/L [nl(s)ez"sl 1] — Ref}(s) should be smaller than = 0.6

@ the Roy’s equations need strong cancellations between ST and KT

6w 18.07.2009, page 13



numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

Decomposition of Roy’'s and GKPY equations: P wave

4 e, 1.0 e e e

Pl-wave, Roy equation Pl-wave, GKPY equation

2 - 4 05 .
i [ | I |
N L 4 L 4
% [ ‘—‘Qésgés;ﬁg B b ST 1
S 0 DT 4 0.0 F =—=—— \ -
) L 1 L DT ]
S \KT ] I ]
n L i L i

-2 4-05 KL e
=47\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7=1.O7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7
0 10 20 30 40 50 60 0 10 20 30 40 50 60

s (m ?) s (m_?)
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

Decomposition of Roy’s and GKPY equations: S2-
wave

R I B o LA s 1.0 77—

: S2-wave, Roy equation : : S2-wave, GKPY equation :

2 4 05 .

2 I ] I ]

QY]
\ L ] L ]
e L ] L ]
£ 0+ 4 0.0 .
wn L 4 L 4
& L ] L ]
> L J L J
n L 4 L 4
-2 + 4-05 .
—4 7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7=1.O 7\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7
0 10 20 30 40 50 60 0 10 20 30 40 50 60
s (m?) s (m,?)

inski, IFJ PAN, 6w, Poland Ow 18.07.2009, page 15



numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, SO-wave

0.6 0.6 -- ckpy®"n
L — &K P’YSD out
0.4 041
= x
o I L
Q =)
& 02 S 02r
o N L
o0 “» o
n n
B F [
& -0.2 o -0.2-
-041" Constrained Fitsto Data (FDR+SR+Roy+GMKIY) 7| "0 Constrained Fitsto Data (FDR+SR+Roy+GKPY) b
=015 1 =093 1
061 | | | | | 06[, | | | |
400 600 800 1000 400 600 800 1000

sm(M ev) sﬂz(M eV)




numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, SO-wave

0.6 0.6 -- ckpy®"n
L — GKPYS® ™
0.4 041
= x
o I L
Q ]
5 02 5 02
o N L
o0 “» o
n n
B F [
& -0.2 o -0.2-
-041" Constrained Fitsto Data (FDR+SR+Roy+GMKIY) 7| "0 Constrained Fitsto Data (FDR+SR+Roy+GKPY) b
=015 1 =093 1
0.6, | | | | il 06[, | | | |
400 600 800 1000 400 600 800 1000
sm(M ev) sﬂz(MeV)

@ STrey(s) = ag + 1—12(2a8 + Sag)(s —4), STekpy = ag + 5ag




numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, SO-wave

T ] N T T ]
06
04
= X
o I
5 2 02
N: N:
Qm hll) 0
n n
4—48 -
& - o -0.2
-041" Constrained Fitsto Data (FDR+SR+Roy+GMKIY) 7| "0 Constrained Fitsto Data (FDR+SR+Roy+GKPY) b
=015 1 =093 1
-06[, L L L L | -06[, L L L L
400 600 800 1000 400 600 800 1000
sm(MeV) sﬂz(MeV)
— a0 1 0 0 _ a0 2
@ STroy(s) = ag + 33(2a7 +5a3)(s — 4), STekpy = 3 + 53

@ Roy’s equations have smaller errors below s/2 ~ 400 MeV

IFJ PAN, Krakéw, Pola EPSO09, Krakéw 18.07.2009, page



numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, SO-wave

T ] N T T ]
06
04
= X
o I
5 2 02
N: N:
Qm hll) 0
n n
4—48 -
& - o -0.2
-041" Constrained Fitsto Data (FDR+SR+Roy+GMKIY) 7| "0 Constrained Fitsto Data (FDR+SR+Roy+GKPY) b
=015 1 =093 1
-06[, L L L L | -06[, L L L L
400 600 800 1000 400 600 800 1000
sm(MeV) sﬂz(MeV)
— a0 1 0 0 _ a0 2
@ STroy(s) = ag + 33(2a7 +5a3)(s — 4), STekpy = 3 + 53

@ Roy’s equations have smaller errors below s/2 ~ 400 MeV
@ GPKY equations have significantly smaller errors above s1/2 ~ 400 MeV

IFJ PAN, Krakoéw, Polal EPS09, Krakéw 18.07.200



numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, P-wave

il -= GKPY

04 — Roy"™| ] 04 — GKPYP™|
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2 2
B 13 1
<& 0 4«5 0 i
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, P-wave

il -= GKPY

04 — Roy"™ 04 — GKPYP™|
X | X |
a2 a2 B
2 2
B 13 1
<& 0 <& 0 i
h1-/7 h1-/7

Ret,
1<
N
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N

-04 Congtrained Fitsto Data (FDR+: @L)/, -04- Constrained Fits to Data (FDR+
| =020 | =077 < |
| | | | | | | |
400 600 800 1000 400 600 800 1000
sl/z(M ev) sl/z(M ev)
_ 1 0 0 _ 1.0 10,2
° STRoy(s) = ﬁ(Zao + 532)(5 —4), STekpy = 3a5 + a2




numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, S2-wave

o6F 2 ! T 06 =g, ! o
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| i |
400 600 800 1000 400 600 800 1000
sm(M eV) 51/2( MeV)




numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))

output from Roy and GKPY equations, S2-wave

o6F 2 ! T 06 =g, ! o
d’=0.66 - d’=0.07
““Roy=" | | L o okpyEn |
045 — Roy=™| 04l — akpy2™|
X 1 x [ 7]
o o
5 02F 4 5 o2k 4
i= [=4
= 15 | i
N: 0 = - N: 0 | -
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n n 4
& )
5 02 o 02 -
@ i
-04 04 Congrained Fitsto Data (FDR+SR+Roy+GKP! -)_“
Constrained Fits to Data (FDR+SR+Roy+GMKPY) = r ]
-0.6 0.6~ =
Il L Il L L L

| i |
400 600 800 1000 400 600 800 1000
sm(M eV) 51/2( MeV)

@ STrey(s) = a2 — (2ad +5a9)(s — 4), STekpy = a3 + 2a2
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numerical results for recent fits
Example of numerical results coupling of resonances (SO wave: o, fy(980), fy(1400))
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),

@ Let's us consider:
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Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
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Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)

@ Let's assume we have defined S matrix, e.9. Sxr = W (D(ky...kn) -
Jost functions)
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)

@ Let's assume we have defined S matrix, e.9. Sxr = W (D(ky...kn) -
Jost functions)

@ Let's assume we have found a pole at spee (zero of denominator - COMMON for
all channels!),
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)

@ Let's assume we have defined S matrix, €.g. Sr» = % (D(Ky...kn) -
Jost functions)

@ Let's assume we have found a pole at spee (zero of denominator - COMMON for
all channels!),

Othen%:| 5 lim s—s —
pole S—Spole ( pole) \/m
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)

@ Let's assume we have defined S matrix, €.g. Sr» = % (D(Ky...kn) -
Jost functions)
@ Let's assume we have found a pole at spee (zero of denominator - COMMON for
all channels!),
Othen%:| 5 lim [s—s —“}
pole S—Spole ( pole) \/m

@ Let's take o pole: but which one?
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numerical results for recent fits
Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)

@ Let's assume we have defined S matrix, €.g. Sr» = W (D(Ky...kn) -
Jost functions)

@ Let's assume we have found a pole at spee (zero of denominator - COMMON for
all channels!),

Othen%:| 5 lim s—s —
pole S—Spole ( pole) \/m

@ Let's take o pole: but which one?

@ 1-channel case — TWO poles (at kr and —k* < S*(k) = S(—k*)) lying
symmetrically to conjugated zeros,

inski, IFJ PAN, 6w, Poland 5 dw 18.07.2009, page 20
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Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

How to calculate couplings? general recipe:

@ 1-channel case (77) up to the KK threshold (= 991 MeV),
@ Letsusconsider: @ 2-channel case (w7 and KK) up to the about 1300-1400 MeV,
@ 3-channel case (=, KK and effective oo)

@ Let's assume we have defined S matrix, €.g. Sr» = W (D(Ky...kn) -
Jost functions)

@ Let's assume we have found a pole at spee (zero of denominator - COMMON for
all channels!),

Othen%:| 5 lim s—s —
pole S—Spole ( pole) \/m

@ Let's take o pole: but which one?
@ 1-channel case — TWO poles (at kr and —k* < S*(k) = S(—k*)) lying
symmetrically to conjugated zeros,
@ 2-channel case — FOUR poles LYING NOT SYMMETRICALLY to corresponding
zeros (kg = +4/k2 + m2 —m2),

@ 3-channel case — EIGHT(!) poles LYING NOT SYMMETRICALLY to
corresponding zeros

inski, IFJ PAN, 6w, Poland 5 dw 18.07.2009, page 20
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Example of numerical results coupling of resonances (S0 wave: o, fp(980), f(1400))

What to do?

@ A) to use amplitudes directly from parameterizations e.g.
@ one can improve coupled channel models using strong constraints from
dispersion relations (i.e. refit model predictions),

@ then make full analysis of singularities of S-matrix elements and calculate
couplings of the most prominent poles to the 77, KK and oo channels

@ B) to use output amplitudes from dispersion relations e.g.

@ P Buettiker, S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C33, 409 (2004),
"A new analysis of pi K scattering from Roy and Steiner type equations”,

@ Z. Xiao, H.-Q. Zheng, Commun. Theor. Phys. 48, 685 (2007), "The Use of
dispersion relations in the pi pi and K anti-K coupled channel system"

@ Let's believe that:
@ results from A) and B) are the same (or at least very similar) and
@ one can calculate errors of couplings in methods A) and B)

Ow 18.07.2009, page 21



Conclusions

Conclusions

@ dispersion relation offer strong constraints for amplitudes
— small errors of o and of a = 0.222 4 0.009,
aZ = —0.045 + 0.008,

Robert Kaminski, IFJ PAN, Krakéw, Poland EPSO09, Krakéw 18.07.2009, page 22



Conclusions

Conclusions

@ dispersion relation offer strong constraints for amplitudes
— small errors of o and of a = 0.222 4 0.009,
aZ = —0.045 + 0.008,

@ one can use them even where is no data,

Poland EPSO09, Krakéw 18.07.2009, page 22



Conclusions

Conclusions

@ dispersion relation offer strong constraints for amplitudes
— small errors of o and of a = 0.222 4 0.009,
aZ = —0.045 + 0.008,

@ one can use them even where is no data,
@ we do not use any ChPT predictions,

Robert Kaminski, IFJ PAN, Krakéw, Poland EPSO09, Krakéw 18.07.2009, page 22



Conclusions

Conclusions

@ dispersion relation offer strong constraints for amplitudes
— small errors of o and of a = 0.222 4 0.009,
aZ = —0.045 + 0.008,

@ one can use them even where is no data,
@ we do not use any ChPT predictions,
@ only analyticity! crossing symmetry is for free,

Robert Kaminski, IFJ PAN, Krakéw, Poland EPSO09, Krakéw 18.07.2009, page 22



Conclusions

Conclusions

dispersion relation offer strong constraints for amplitudes
— small errors of o and of a = 0.222 4 0.009,
aZ = —0.045 + 0.008,

one can use them even where is no data,
we do not use any ChPT predictions,
only analyticity! crossing symmetry is for free,

one can combine data from complete set of partial waves
(S —G),

Robert Kaminski, IFJ PAN, Krakéw, Poland EPSO09, Krakéw 18.07.2009, page 22



Conclusions

Conclusions

dispersion relation offer strong constraints for amplitudes
— small errors of o and of a = 0.222 4 0.009,
aZ = —0.045 + 0.008,

one can use them even where is no data,

we do not use any ChPT predictions,

only analyticity! crossing symmetry is for free,

one can combine data from complete set of partial waves
(S —G),

we recommend GKPY equations as "more demanding"
above ~ 400 MeV
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