Why dispersion relations help in description of pion-pion amplitudes and lead to precise determination of the $f_0(600) \ (\sigma)$ parameters?

Robert Kamińskia,
R. García-Martínb, J. Pelaezb and
F. Yndurainc

aInstitute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
bDepartamento de Physica Teorica II, Universidad Complutense de Madrid, Spain
cDepartamento de Physica Teorica, Universidad Autonoma de Madrid, Spain
Outline

1. \(\pi\pi \) amplitudes from experimental data only
 - phase shifts, inelasticities and cross sections for the S0 wave

2. Dispersion relations with imposed crossing symmetry condition
 - what do we need and what we propose?
 - historical review
 - threshold behavior of output amplitudes

3. Example of numerical results
 - numerical results for recent fits
 - coupling of resonances (S0 wave: \(\sigma, f_0(980), f_0(1400) \))

4. Conclusions
1. \(\pi\pi\) amplitudes from experimental data only
 - phase shifts, inelasticities and cross sections for the S0 wave

2. Dispersion relations with imposed crossing symmetry condition
 - what do we need and what we propose?
 - historical review
 - threshold behavior of output amplitudes

3. Example of numerical results
 - numerical results for recent fits
 - coupling of resonances (S0 wave: \(\sigma, f_0(980), f_0(1400)\))

Conclusions
Outline

1. **ππ amplitudes from experimental data only**
 - phase shifts, inelasticities and cross sections for the S_0 wave

2. **Dispersion relations with imposed crossing symmetry condition**
 - what do we need and what we propose?
 - historical review
 - threshold behavior of output amplitudes

3. **Example of numerical results**
 - numerical results for recent fits
 - coupling of resonances (S_0 wave: σ, $f_0(980)$, $f_0(1400)$)

Conclusions
Outline

1. **ππ amplitudes from experimental data only**
 - phase shifts, inelasticities and cross sections for the S_0 wave

2. **Dispersion relations with imposed crossing symmetry condition**
 - what do we need and what we propose?
 - historical review
 - threshold behavior of output amplitudes

3. **Example of numerical results**
 - numerical results for recent fits
 - coupling of resonances (S_0 wave: σ, $f_0(980)$, $f_0(1400)$)

1. **Conclusions**
Phase shifts from $\pi\pi$ threshold to ~ 1600 MeV

- Experimental data for S_0 (Jl) wave,

- Experiments $\rightarrow T = (\eta e^{2i\delta} - 1)/2i\rho \rightarrow$

- Resonances: $f_0(600)$ (σ), $f_0(980)$, $f_0(1370)$, $f_0(1500)$

- $n\pi \rightarrow n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K \rightarrow \pi^+\pi^-e\nu_e$) $m_{\pi\pi} < 500$ MeV,

- Experiment \rightarrow PWA \rightarrow phases δ and inelasticities η below ~ 1600 MeV (S-G waves) \rightarrow

- Well known "up-down" ambiguity below 1 GeV (solution "up" eliminated in 2003 using the Roy’s equations),

- Peculiar cross section

Robert Kamiński, IFJ PAN, Kraków, Poland

EPS09, Kraków 18.07.2009, page 3
Phase shifts from $\pi\pi$ threshold to ~ 1600 MeV

- Experimental data for $S0$ (J^I) wave,
- Experiments $\rightarrow T = (\eta e^{2i\delta} - 1)/2i\rho \rightarrow$
 - Resonances: $f_0(600)$ (σ), $f_0(980)$, $f_0(1370)$, $f_0(1500)$
- $n\pi \rightarrow n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K \rightarrow \pi^+\pi^-e\nu_e$) $m_{\pi\pi} < 500$ MeV,
- Experiment \rightarrow PWA \rightarrow phases δ and inelasticities η below ~ 1600 MeV (S-G waves) \rightarrow
 - Well known "up-down" ambiguity below 1 GeV (solution "up" eliminated in 2003 using the Roy's equations),
- Peculiar cross section
Phase shifts from $\pi\pi$ threshold to ~ 1600 MeV

- Experimental data for S_0 (Jl) wave,
- Experiments $\rightarrow T = (\eta e^{2i\delta} - 1)/2i\rho$ \rightarrow
- Resonances: $f_0(600)$ (σ), $f_0(980)$, $f_0(1370)$, $f_0(1500)$
- $n\pi \rightarrow n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K \rightarrow \pi^+\pi^- e\nu_e$) $m_{\pi\pi} < 500$ MeV,
- Experiment \rightarrow PWA \rightarrow phases δ and inelasticities η below ~ 1600 MeV (S-G waves) \rightarrow
- Well known “up-down” ambiguity below 1 GeV (solution “up” eliminated in 2003 using the Roy’s equations),
- Peculiar cross section
phase shifts from $\pi\pi$ threshold to ~ 1600 MeV

- experimental data for $S0$ (J^P) wave,
- experiments $\rightarrow T = (\eta e^{2i\delta} - 1)/2i\rho$, \rightarrow resonances: $f_0(600)$ (σ), $f_0(980)$, $f_0(1370)$, $f_0(1500)$
- $n\pi \rightarrow n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K \rightarrow \pi^+\pi^-\nu\bar{\nu}$) $m_{\pi\pi} < 500$ MeV,
- experiment \rightarrow PWA \rightarrow phases δ and inelasticities η below ~ 1600 MeV (S-G waves) \rightarrow
- well known “up-down” ambiguity below 1 GeV (solution "up" eliminated in 2003 using the Roy’s equations),
- peculiar cross section
phase shifts from $\pi\pi$ threshold to ~ 1600 MeV

- experimental data for $S0 (J\ell)$ wave,
- experiments $\rightarrow T = (\eta e^{2i\delta} - 1)/2i\rho$ \rightarrow
- \rightarrow resonances: $f_0(600) (\sigma)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$
- $n\pi \rightarrow n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K \rightarrow \pi^+\pi^- e\nu_e$) $m_{\pi\pi} < 500$ MeV,
- experiment \rightarrow PWA \rightarrow phases δ and inelasticities η below ~ 1600 MeV (S-G waves) \rightarrow
- well known “up-down” ambiguity below 1 GeV (solution "up" eliminated in 2003 using the Roy’s equations),
- peculiar cross section
phase shifts from $\pi\pi$ threshold to ~ 1600 MeV

- experimental data for $S0$ (Jl) wave,
- experiments $\rightarrow T = (\eta e^{2i\delta} - 1)/2i\rho \rightarrow$
- \rightarrow resonances: $f_0(600)$ (σ), $f_0(980)$, $f_0(1370)$, $f_0(1500)$
- $n\pi \rightarrow n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K \rightarrow \pi^+\pi^-\nu\bar{\nu}$) $m_{\pi\pi} < 500$ MeV,
- experiment \rightarrow PWA \rightarrow phases δ and inelasticities η below ~ 1600 MeV (S-G waves) \rightarrow
- well known "up-down" ambiguity below 1 GeV (solution "up" eliminated in 2003 using the Roy’s equations),
- peculiar cross section
Phase shifts, inelasticities and cross sections for the S0 wave

Phase shifts from ππ threshold to ~ 1600 MeV

- Experimental data for S0 (Jl) wave,
- Experiments → $T = (\eta e^{2i\delta} - 1)/2i\rho →$
- → Resonances: $f_0(600)$ (σ), $f_0(980)$, $f_0(1370)$, $f_0(1500)$
- $n\pi → n\pi\pi$ scattering (600-1800 MeV), K_{l4} decays ($K → \pi^+\pi^- e\nu_e$) $m_{\pi\pi} < 500$ MeV,
- Experiment → PWA → phases δ and inelasticities η below ~ 1600 MeV (S-G waves) →
- Well known "up-down" ambiguity below 1 GeV (solution "up" eliminated in 2003 using the Roy’s equations),
- Peculiar cross section
The S0 wave: Different sets

The fits to different sets follow two behaviors compared with that to KI4 data only. Those close to the pure KI4 fit display a "shoulder" in the 500 to 800 MeV region. These are:

- pure KI4, SolutionC
- and the global fits

Other fits do not have the shoulder and are separated from pure KI4.

Kaminski et al. lies in between with huge errors. Solution E deviates strongly from the rest but has huge error bars.

Note size of uncertainty in data at 800 MeV!!

More "flat" data sets give $\Gamma \approx 1000$ MeV, those with shoulder ≈ 500 MeV.

Robert Kamiński, IFJ PAN, Kraków, Poland
phase shifts below 1 GeV (S0 wave)

The S0 wave. Different sets

The fits to different sets follow two behaviors compared with that to KI4 data only:

- Those close to the pure KI4 fit display a "shoulder" in the 500 to 800 MeV region
- More "flat" data sets give $\Gamma \approx 1000$ MeV, those with shoulder ≈ 500 MeV

These are:
- pure KI4, SolutionC and the global fits
- Other fits do not have the shoulder and are separated from pure KI4

Kaminski et al. lies in between with huge errors
- Solution E deviates strongly from the rest but has huge error bars

Note size of uncertainty in data at 800 MeV!!

Robert Kamiński, IFJ PAN, Kraków, Poland
cross sections for the S_0 wave

- $\sigma_{11} : \pi\pi \rightarrow \pi\pi$
- $\sigma_{12} : \pi\pi \rightarrow K\bar{K}$
- $\sigma_{13} : \pi\pi \rightarrow \sigma\sigma$

- completely not intuitive behaviour of cross sections,
- Breit-Wigner approximations: Γ_σ from nonrelativistic and relativistic BW can differ by 300-400 MeV
- σ state disappeared from PDG Tables in 1976, back in 1996
- continuation of amplitudes into complex energy plane $\rightarrow M = \text{Re}(s_{pole}), \Gamma = -2\text{Im}(s_{pole})$
cross sections for the S_0 wave

- $\sigma_{11} : \pi\pi \rightarrow \pi\pi$
- $\sigma_{12} : \pi\pi \rightarrow K\bar{K}$
- $\sigma_{13} : \pi\pi \rightarrow \sigma\sigma$

completely not intuitive behaviour of cross sections,

Breit-Wigner approximations: Γ_{σ} from nonrelativistic and relativistic BW can differ by 300-400 MeV

σ state disappeared from PDG Tables in 1976, back in 1996

continuation of amplitudes into complex energy plane \rightarrow

$M = \text{Re}(s_{pole})$, $\Gamma = -2\text{Im}(s_{pole})$,

$\sigma (\text{mb})$

$E (\text{MeV})$

Robert Kamiński, IFJ PAN, Kraków, Poland

EPS09, Kraków 18.07.2009, page 5
Cross sections for the S0 wave

- $\sigma_{11} : \pi\pi \rightarrow \pi\pi$
- $\sigma_{12} : \pi\pi \rightarrow K\bar{K}$
- $\sigma_{13} : \pi\pi \rightarrow \sigma\sigma$

- Completely not intuitive behaviour of cross sections,

- Breit-Wigner approximations: Γ_σ from nonrelativistic and relativistic BW can differ by 300-400 MeV

- σ state disappeared from PDG Tables in 1976, back in 1996

- Continuation of amplitudes into complex energy plane
- $M = \text{Re}(s_{pole})$, $\Gamma = -2\text{Im}(s_{pole})$,
cross sections for the S0 wave

- $\sigma_{11} : \pi\pi \rightarrow \pi\pi$
- $\sigma_{12} : \pi\pi \rightarrow K\bar{K}$
- $\sigma_{13} : \pi\pi \rightarrow \sigma\sigma$

- completely not intuitive behaviour of cross sections,

- Breit-Wigner approximations: Γ_σ from nonrelativistic and relativistic BW can differ by 300-400 MeV

- σ state disappeared from PDG Tables in 1976, back in 1996

- continuation of amplitudes into complex energy plane \rightarrow
 $M = \text{Re}(s_{\text{pole}}), \Gamma = -2\text{Im}(s_{\text{pole}})$

\[\begin{align*}
\text{E (MeV)} & \quad \sigma (\text{mb}) \\
400 & \quad 10^{-1} \\
600 & \quad 10^{-1} \\
800 & \quad 10^{-1} \\
1000 & \quad 10^{-1} \\
1200 & \quad 10^{-1} \\
1400 & \quad 10^{-1} \\
1600 & \quad 10^{-1} \\
1800 & \quad 10^{-1}
\end{align*}\]
cross sections for the S_0 wave

- $\sigma_{11} : \pi\pi \rightarrow \pi\pi$
- $\sigma_{12} : \pi\pi \rightarrow K\bar{K}$
- $\sigma_{13} : \pi\pi \rightarrow \sigma\sigma$

- completely not intuitive behaviour of cross sections,
- Breit-Wigner approximations: Γ_σ from nonrelativistic and relativistic BW can differ by 300-400 MeV
- σ state disappeared from PDG Tables in 1976, back in 1996
- continuation of amplitudes into complex energy plane \rightarrow
 $M = \text{Re}(s_{pole})$, $\Gamma = -2\text{Im}(s_{pole})$,
what do we need:

- something what can eliminate unphysical data and
- is model independent,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
what do we need:

- something what can eliminate unphysical data and
- is model independent,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
what do we need:

- something what can eliminate unphysical data and
- is **model independent**,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
what do we need:

- something what can eliminate unphysical data and
- is model independent,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
what do we need:

- something what can eliminate unphysical data and
- is **model independent**,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
What do we need:

- something what can eliminate unphysical data and
- is model independent,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
- and if possible on crossing symmetry:

$$T(s, t) = C_{st} T(t, s)$$

where C_{st} is crossing matrix.
What do we need:

- something what can eliminate unphysical data and
- is **model independent**,
- something what can be applied for wide $m_{\pi\pi}$ range,
- and for many partial waves,
- we should remember on analyticity and unitarity(!) and
- and if possible on crossing symmetry:

$$T(s, t) = C_{st} T(t, s)$$ where C_{st} is crossing matrix
We propose: twice subtracted dispersion relations (Roy’s equations)

\[\text{Re } f_\ell^I(s) = ST(s) + KT(s) + DT(s) \]

where

- **subtracting term** \(ST(s) = a_0^0 \delta_{I_0} \delta_{\ell_0} + a_0^2 \delta_{I_2} \delta_{\ell_0} + \frac{s-4}{12} (2a_0^0 - 5a_0^2)(\delta_{I_0} \delta_{\ell_0} + \frac{1}{6} \delta_{I_1} \delta_{\ell_1} - \frac{1}{2} \delta_{I_2} \delta_{\ell_0}) \) with \(a_0^0 \) and \(a_0^2 \) - the \(\pi\pi \) scattering lengths in the \(S_0 \)- and \(S_2 \)-wave,

- **kernel term** \(KT(s) = \sum_{I' = 0}^{2} \sum_{\ell' = 0}^{1} \int_{4}^{s_{\text{max}}} ds' K_{\ell\ell'}^{I'I}(s, s') \text{Im } f_{\ell'}^{I'}(s') \) with kernels \(K_{\ell\ell'}^{I'I}(s, s') \sim 1/(s - s')(s' - 4)^2 \)

- **driving term** \(DT(s) = d_\ell^I(s, s_{\text{max}}) \) \(\rightarrow \) higher partial waves and high energy parts \((s < s_{\text{max}} \approx 1.5 \text{ GeV}) \) of \(S_0, P \) and \(S_2 \) amplitudes (regge).

- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
We propose: twice subtracted dispersion relations (Roy’s equations)

\[\text{Re } f^I_\ell(s) = ST(s) + KT(s) + DT(s) \]

where

- "subtracting term" \(ST(s) = a_0^0 \delta_{I0} \delta_{\ell0} + a_2^0 \delta_{I2} \delta_{\ell0} + \)
 \[\frac{s - 4}{12} (2a_0^0 - 5a_2^0)(\delta_{I0} \delta_{\ell0} + \frac{1}{6} \delta_{I1} \delta_{\ell1} - \frac{1}{2} \delta_{I2} \delta_{\ell0}) \]
 with \(a_0^0 \) and \(a_2^0 \) - the \(\pi \pi \) scattering lengths in the \(S0 \)- and \(S2 \)-wave,

- "kernel term" \(KT(s) = \sum_{I'=0}^{2} \sum_{\ell'=0}^{1} \int_4^{s_{\text{max}}} ds' K_{I'\ell'}^{I\ell} (s, s') \text{Im } f_{I'\ell'}^{I\ell} (s') \)
 with kernels \(K_{I'\ell'}^{I\ell} (s, s') \sim 1/(s - s')(s' - 4)^2 \)

- "driving term" \(DT(s) = d_\ell^I (s, s_{\text{max}}) \rightarrow \) higher partial waves and high energy parts \((s < s_{\text{max}} \approx 1.5 \text{ GeV}) \) of \(S0 \), \(P \) and \(S2 \) amplitudes (regge).

- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
We propose: twice subtracted dispersion relations (Roy's equations)

- \(\text{Re } f^\ell_l(s) = ST(s) + KT(s) + DT(s) \) where
- "subtracting term" \(ST(s) = a_0^0 \delta_{l0} \delta_{00} + a_0^2 \delta_{l2} \delta_{00} + \frac{s - 4}{12} (2a_0^0 - 5a_0^2)(\delta_{l0} \delta_{00} + \frac{1}{6} \delta_{l1} \delta_{01} - \frac{1}{2} \delta_{l2} \delta_{00}) \) with \(a_0^0 \) and \(a_0^2 \) - the \(\pi \pi \) scattering lengths in the \(S_0 \)- and \(S_2 \)-wave,
- "kernel term" \(KT(s) = \sum_{l''=0}^{2} \sum_{\ell''=0}^{1} \int_4^{s_{\text{max}}} ds' K^l_{\ell l'}(s, s') \text{Im } f^l_{\ell'}(s') \) with kernels \(K^l_{\ell l'}(s, s') \sim 1/(s - s')(s' - 4)^2 \) and
- "driving term" \(DT(s) = d^l_l(s, s_{\text{max}}) \) \(\longrightarrow \) higher partial waves and high energy parts \((s < s_{\text{max}} \approx 1.5 \text{ GeV}) \) of \(S_0, P \) and \(S_2 \) amplitudes (regge).
- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
We propose: twice subtracted dispersion relations (Roy’s equations)

\[\text{Re} f^I_\ell(s) = ST(s) + KT(s) + DT(s) \]

where

- **"subtracting term" ST(s)**
 \[ST(s) = a^0_0 \delta I_0 \delta \ell_0 + a^2_0 \delta I_2 \delta \ell_0 + \]
 \[\frac{s - 4}{12} (2 a^0_0 - 5 a^2_0) (\delta I_0 \delta \ell_0 + \frac{1}{6} \delta I_1 \delta \ell_1 - \frac{1}{2} \delta I_2 \delta \ell_0) \]
 with \(a^0_0 \) and \(a^2_0 \) - the \(\pi \pi \) scattering lengths in the \(S_0 \)- and \(S_2 \)-wave,

- **"kernel term" KT(s)**
 \[KT(s) = \sum_{\ell'} \sum_{\ell''} \int_{s''=0}^{s_{\text{max}}} ds' K^{ll'}_{\ell'\ell}(s, s') \text{Im} f^{ll'}_\ell(s') \]
 with kernels \(K^{ll'}_{\ell'\ell}(s, s') \approx 1/(s - s')(s' - 4)^2 \)

- **"driving term" DT(s)**
 \[DT(s) = d^I_\ell(s, s_{\text{max}}) \]
 \(\rightarrow \) higher partial waves and high energy parts \(s < s_{\text{max}} \approx 1.5 \text{ GeV} \) of \(S_0, P \) and \(S_2 \) amplitudes (regge).

applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
We propose: twice subtracted dispersion relations (Roy’s equations)

- \(\text{Re } f_\ell^l(s) = ST(s) + KT(s) + DT(s) \) where

- “subtracting term” \(ST(s) = a_0^0 \delta_{l0} \delta_{\ell0} + a_0^2 \delta_{l2} \delta_{\ell0} + \)
 \[
 \frac{s - 4}{12} \left(2a_0^0 - 5a_0^2 \right) \left(\delta_{l0} \delta_{\ell0} + \frac{1}{6} \delta_{l1} \delta_{\ell1} - \frac{1}{2} \delta_{l2} \delta_{\ell0} \right)
 \]
 with \(a_0^0 \) and \(a_0^2 \) - the \(\pi \pi \) scattering lengths in the \(S_0 \)- and \(S_2 \)-wave,

- “kernel term” \(KT(s) = \sum_{l'' = 0}^{2} \sum_{\ell'' = 0}^{1} \int_4^{s_{\text{max}}} ds' K_{\ell\ell'}^{ll'}(s, s') \text{Im } f_{\ell'}^{l'}(s') \) with kernels

- \(K_{\ell\ell'}^{ll'}(s, s') \sim 1/(s - s')(s' - 4)^2 \) ←!! and

- “driving term” \(DT(s) = d_\ell^l(s, s_{\text{max}}) \) \(\longrightarrow \) higher partial waves and high energy parts \((s < s_{\text{max}} \approx 1.5 \text{ GeV}) \) of \(S_0, P \) and \(S_2 \) amplitudes (regge).

- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
and once subtracted dispersion relations (GKPY equations)

- **Re** $f^I_{\ell}(s) = ST(s) + KT(s) + DT(s)$
 where

- "subtracting term" $ST(s) = \sum_I C''_{st} a^{I'}_0$
 with $a_0 = (a_0^0, 0, a_0^2)$ and C_{st} - crossing matrix (for $s \leftarrow t$)

- "kernel term" $KT(s) = \sum_{l'} \int_{s''=0}^{s_{\text{max}}^{l'}} ds'' K''_{\ell\ell'}^{l''}(s, s'') \text{Im} f_{\ell'}^{I'}(s')$
 with kernels $K''_{\ell\ell'}^{l''}(s, s') \sim 1/(s - s')(s' - 4)$ and

- "driving term" $DT(s) = d_{\ell}(s, s_{\text{max}}) \rightarrow$ higher partial waves and high energy parts ($s < s_{\text{max}} \approx 1.5 \text{ GeV}$) of $S0$, P and $S2$ amplitudes (regge).

- applicable for $s \lesssim 60 \rightarrow \approx 1100 \text{ MeV}$
and once subtracted dispersion relations (GKPY equations)

- \(\text{Re } f^I_\ell(s) = ST(s) + KT(s) + DT(s) \) where

- "subtracting term" \(ST(s) = \sum_{I'} C_{st}^{I'I'} a_0' \) with
 \(a_0 = (a_0^0, 0, a_0^2) \) and \(C_{st} \) - crossing matrix (for \(s \leftrightarrow t \))

- "kernel term" \(KT(s) = \sum_{I''=0}^{2} \sum_{\ell''=0}^{1} \int_4^{s_{\text{max}}} \text{Im } f^{I''}_{\ell''}(s',s') \text{Im } f^{I'I'}_{\ell'I'}(s,s') \text{Im } f^{I'I'}_{\ell'I'}(s,s') \) with kernels
 \(K^{I''}_{\ell''}(s,s') \sim 1/(s - s')(s' - 4) \) and

- "driving term" \(DT(s) = d^I_\ell(s,s_{\text{max}}) \rightarrow \) higher partial waves and high energy
 parts \(s < s_{\text{max}} \approx 1.5 \text{ GeV} \) of \(S_0, P \) and \(S_2 \) amplitudes (regge).

- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
and once subtracted dispersion relations (GKPY equations)

\[\text{Re } f'_\ell(s) = ST(s) + KT(s) + DT(s) \]

where

- "subtracting term" \(ST(s) = \sum_{l'} C^{ll'}_s a'_0 \) with \(a_0 = (a^0_0, 0, a^2_0) \) and \(C_s - \text{crossing matrix (for } s \leftrightarrow t) \)

- "kernel term" \(KT(s) = \sum_{l'} \sum_{l''=0}^{1} \int_{s''=0}^{s_{\text{max}}} ds' K^{ll''}_{\ell l'}(s, s') \text{Im } f'_{\ell l'}(s') \) with kernels

\[K^{ll''}_{\ell l'}(s, s') \sim 1/(s - s')(s' - 4) \text{ and} \]

- "driving term" \(DT(s) = d^l_\ell(s, s_{\text{max}}) \) \(\longrightarrow \) higher partial waves and high energy parts \(s < s_{\text{max}} \approx 1.5 \text{ GeV} \) of \(S0, P \) and \(S2 \) amplitudes (regge).

- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
and once subtracted dispersion relations (GKPY equations)

- $\text{Re } f_{\ell}^I(s) = ST(s) + KT(s) + DT(s)$ where
 - “subtracting term” $ST(s) = \sum I' C_{st}^{II'} a_0''$ with $a_0 = (a_0^0, 0, a_0^2)$ and C_{st} - crossing matrix (for $s \leftrightarrow t$)
 - “kernel term” $KT(s) = \sum_{I''=0}^{2} \sum_{\ell''=0}^{1} \int_4^{s_{\text{max}}} ds' K_{\ell\ell'}^{II'}(s, s') \text{Im } f_{\ell'}^{I''}(s')$ with kernels $K_{\ell\ell'}^{II'}(s, s') \sim 1/(s - s')(s' - 4)$ and
 - “driving term” $DT(s) = d_{\ell}^{I}(s, s_{\text{max}}) \rightarrow$ higher partial waves and high energy parts ($s < s_{\text{max}} \approx 1.5 \text{ GeV}$) of $S0$, P and $S2$ amplitudes (regge).

applicable for $s \lesssim 60 \rightarrow \approx 1100 \text{ MeV}$
and once subtracted dispersion relations (GKPY equations)

- \(\text{Re } f^I_\ell(s) = ST(s) + KT(s) + DT(s) \) where

- "subtracting term" \(ST(s) = \sum I' C'^{II'}_{st} a_0' \) with \(a_0 = (a^0_0, 0, a^2_0) \) and \(C_{st} \) - crossing matrix (for \(s \rightarrow t \))

- "kernel term" \(KT(s) = \sum_{l'} \sum_{\ell'}^2 \int_{s'=0}^{s_{\text{max}}} ds' K^{II'}_{\ell\ell'}(s, s') \text{Im } f^l_{\ell'}(s') \) with kernels

\[
K^{II'}_{\ell\ell'}(s, s') \sim \frac{1}{(s - s')(s' - 4)}
\]

- "driving term" \(DT(s) = d^I_\ell(s, s_{\text{max}}) \) \(\rightarrow \) higher partial waves and high energy parts (\(s < s_{\text{max}} \approx 1.5 \text{ GeV} \)) of \(S0, P \) and \(S2 \) amplitudes (regge).

- applicable for \(s \lesssim 60 \rightarrow \approx 1100 \text{ MeV} \)
short historical review

- 1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)
- 1972, 1974 → Basdevant et al.,
- 1973 → Pennington,
- 2000 → Wanders,
- 2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy's equations" (up-down" ambiguity),
- 2003 → now: discussion between Swiss and Madrid groups, (27 papers)
- number of papers on the Roy’s equations: 1971-2000: 12
 after 2001-2009: 35
1971 → S. M. Roy introduces crossing symmetry into $\pi \pi$ amplitudes and fixes them at the $\pi \pi$ threshold (\rightarrow scattering lengths), Phys. Lett. B 36, 353 (1971)

1972, 1974 → Basdevant et al.,

1973 → Pennington,

2000 → Wanders,

2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi \pi$ amplitudes using Roy's equations" (up-down" ambiguity),

2001 → B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler (Swiss group), "Roy equation analysis of $\pi \pi \pi$ scattering", Phys. Rept. 353, 207 (2001),

2003 → now: discussion between Swiss and Madrid groups, (27 papers)

short historical review

- 1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)
- 1972, 1974 → Basdevant et al.,
- 1973 → Pennington,
- 2000 → Wanders,
- 2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy's equations" (up-down" ambiguity),
- 2003 → now: discussion between Swiss and Madrid groups, (27 papers)
1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)

1972, 1974 → Basdevant et al.,

1973 → Pennington,

2000 → Wanders,

2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy’s equations" (up-down" ambiguity),

2003 → now: discussion between Swiss and Madrid groups, (27 papers)

short historical review

- 1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)
- 1972, 1974 → Basdevant et al.,
- 1973 → Pennington,
- 2000 → Wanders,
- 2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy’s equations" (up-down” ambiguity),
- 2003 → now: discussion between Swiss and Madrid groups, (27 papers)
- number of papers on the Roy’s equations: 1971-2000: 12
 after 2001-2009: 35
short historical review

- 1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)
- 1972, 1974 → Basdevant et al.,
- 1973 → Pennington,
- 2000 → Wanders,
- 2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy’s equations" (up-down" ambiguity),
- 2003 → now: discussion between Swiss and Madrid groups, (27 papers)
- number of papers on the Roy’s equations: 1971-2000: 12
 after 2001-2009: 35
short historical review

- 1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (\rightarrow scattering lengths), Phys. Lett. B 36, 353 (1971)
- 1972, 1974 → Basdevant et al.,
- 1973 → Pennington,
- 2000 → Wanders,
- 2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy’s equations" (up-down" ambiguity),
- 2003 → now: discussion between Swiss and Madrid groups, (27 papers)
1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)

1972, 1974 → Basdevant et al.,

1973 → Pennington,

2000 → Wanders,

2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy's equations" (up-down" ambiguity),

2003 → now: discussion between Swiss and Madrid groups, (27 papers)

number of papers on the Roy's equations: 1971-2000: 12
after 2001-2009: 35
short historical review

- 1971 → S. M. Roy introduces crossing symmetry into $\pi\pi$ amplitudes and fixes them at the $\pi\pi$ threshold (→ scattering lengths), Phys. Lett. B 36, 353 (1971)
- 1972, 1974 → Basdevant et al.,
- 1973 → Pennington,
- 2000 → Wanders,
- 2003 → R. Kamiński, L. Leśniak, B. Loiseau: "Elimination of ambiguities in $\pi\pi$ amplitudes using Roy’s equations" (up-down" ambiguity),
- 2003 → now: discussion between Swiss and Madrid groups, (27 papers)
Threshold expansion:
\[R_{f\ell} (s \approx 4) = (s - 4)^\ell \left[a_{\ell}^i + b_{\ell}^i (s - 4) + \ldots \right] \]

Let's compare the Roy's and GKPY equations:

<table>
<thead>
<tr>
<th>Wave</th>
<th>Thr. exp</th>
<th>(ST_{Roy})</th>
<th>(KT&DT_{Roy})</th>
<th>(ST_{GKPY})</th>
<th>(KT&DT_{GKPY})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>(a_0^0)</td>
<td>(a_0^0 + C_{S0} (s - 4))</td>
<td>(\beta_{S0} (s - 4))</td>
<td>(a_0^0 + 5a_0^2)</td>
<td>(\alpha_{S0} + \beta_{S0} (s - 4))</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>(C_P (s - 4))</td>
<td>(\beta_{P1} (s - 4))</td>
<td>(a_0^0 - \frac{5}{2}a_0^2)</td>
<td>(\alpha_{P1} + \beta_{P1} (s - 4))</td>
</tr>
<tr>
<td>S2</td>
<td>(a_0^2)</td>
<td>(a_0^2 + C_{S2} (s - 4))</td>
<td>(\beta_{S2} (s - 4))</td>
<td>(a_0^0 + \frac{1}{2}a_0^2)</td>
<td>(\alpha_{S2} + \beta_{S2} (s - 4))</td>
</tr>
</tbody>
</table>

So, in GKPY equations necessary are mutual cancellations of constant terms in the \(P \)-wave and partial cancellations in the \(S \)-waves.
Threshold expansion:
\[Ref_\ell^l(s \approx 4) = (s - 4)^\ell \left[a_\ell^l + b_\ell^l(s - 4) + \ldots \right] \]

Let's compare the Roy's and GKPY equations:

<table>
<thead>
<tr>
<th>Wave</th>
<th>Thr. exp</th>
<th>(ST_{Roy})</th>
<th>(KT&DT_{Roy})</th>
<th>(ST_{GKPY})</th>
<th>(KT&DT_{GKPY})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S0)</td>
<td>(a_0^0)</td>
<td>(a_0^0 + C_{S0}(s - 4))</td>
<td>(\beta_{S0}(s - 4))</td>
<td>(a_0^0 + 5a_0^2)</td>
<td>(\alpha_{S0} + \beta_{S0}(s - 4))</td>
</tr>
<tr>
<td>(P)</td>
<td>0</td>
<td>(C_P(s - 4))</td>
<td>(\beta_{P1}(s - 4))</td>
<td>(a_0^0 - \frac{5}{2}a_0^2)</td>
<td>(\alpha_{P1} + \beta_{P1}(s - 4))</td>
</tr>
<tr>
<td>(S2)</td>
<td>(a_0^2)</td>
<td>(a_0^2 + C_{S2}(s - 4))</td>
<td>(\beta_{S2}(s - 4))</td>
<td>(a_0^0 + \frac{1}{2}a_0^2)</td>
<td>(\alpha_{S2} + \beta_{S2}(s - 4))</td>
</tr>
</tbody>
</table>

so, in GKPY equations necessary are mutual cancellations of constant terms in the \(P \)-wave and partial cancellations in the \(S \)-waves.
Threshold expansion:
\[\text{Ref}_\ell^I(s \approx 4) = (s - 4)\ell \left[a_\ell^I + b_\ell^I(s - 4) + \ldots \right] \]

Let’s compare the Roy’s and GKPY equations:

<table>
<thead>
<tr>
<th>Wave</th>
<th>Thr. exp</th>
<th>(ST_{Roy})</th>
<th>(KT&DT_{Roy})</th>
<th>(ST_{GKPY})</th>
<th>(KT&DT_{GKPY})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>(a_0^0)</td>
<td>(a_0^0 + C_{S0}(s - 4))</td>
<td>(\beta_{S0}(s - 4))</td>
<td>(a_0^0 + 5a_0^2)</td>
<td>(\alpha_{S0} + \beta_{S0}(s - 4))</td>
</tr>
<tr>
<td>P</td>
<td>(a_0^P)</td>
<td>(C_P(s - 4))</td>
<td>(\beta_{P1}(s - 4))</td>
<td>(a_0^0 - \frac{5}{2}a_0^2)</td>
<td>(\alpha_{P1} + \beta_{P1}(s - 4))</td>
</tr>
<tr>
<td>S2</td>
<td>(a_0^S)</td>
<td>(a_0^2 + C_{S2}(s - 4))</td>
<td>(\beta_{S2}(s - 4))</td>
<td>(a_0^0 + \frac{1}{2}a_0^2)</td>
<td>(\alpha_{S2} + \beta_{S2}(s - 4))</td>
</tr>
</tbody>
</table>

so, in GKPY equations necessary are mutual cancellations of constant terms in the \(P \)-wave and partial cancellations in the \(S \)-waves.
The pion-pion scattering amplitude III

Robert Kamiński, IFJ PAN, Kraków, Poland
EPS09, Kraków 18.07.2009, page 12
phase shifts for the S_0-wave

- for $m_{\pi\pi} < 932$ MeV:
 \[
 \cot\delta(s) = \frac{s^{1/2} \frac{m_{\pi}^2}{2k}}{s - \frac{1}{2}z_0^2} \left[\frac{z_0^2}{m_{\pi}\sqrt{s}} + B_0 + B_1w(s) + B_2w(s)^2 \right],
 \]
 \[z_0 \approx m_{\pi} \leftarrow \text{Adler zero},\]

- $s \rightarrow w(s) = \frac{\sqrt{s} - \sqrt{s_0 - s}}{\sqrt{s} + \sqrt{s_0 - s}}$, $s_0 = 1.45$ GeV,

- above 932 MeV: K-matrix approach,

- Matching point at 932 MeV,

- Fits: FDR + sum rules + Roy + GKPY + exp. data, 7 waves ($S - G$), 52 parameters,

- main point of discussion between Bern and Madrid group: errors and S_0 phase shift at 800 MeV.
phase shifts for the S0-wave

for $m_{\pi\pi} < 932$ MeV: $\cot\delta(s) = \frac{s^{1/2}}{2k} \frac{m_{\pi}^2}{s - \frac{1}{2} z_0^2}$

\[
\left[\frac{z_0^2}{m_{\pi}\sqrt{s}} + B_0 + B_1 w(s) + B_2 w(s)^2 \right],
\]

$z_0 \approx m_{\pi} \leftarrow$ Adler zero,

$s \rightarrow w(s) = \frac{\sqrt{s} - \sqrt{s_0 - s}}{\sqrt{s} + \sqrt{s_0 - s}}, s_0 = 1.45$ GeV,

above 932 MeV: K-matrix approach,

Matching point at 932 MeV,

Fits: FDR + sum rules + Roy + GKPY + exp. data, 7 waves ($S - G$), 52 parameters,

main point of discussion between Bern and Madrid group: errors and S0 phase shift at 800 MeV
For $m_{\pi\pi} < 932$ MeV: $\cot \delta(s) = \frac{s^{1/2}}{2k} \frac{m_{\pi}^2}{s - \frac{1}{2} z_0^2}$

$$\left[\frac{z_0^2}{m_{\pi} \sqrt{s}} + B_0 + B_1 w(s) + B_2 w(s)^2 \right],$$

$z_0 \approx m_{\pi} \leftarrow$ Adler zero,

$s \to w(s) = \frac{\sqrt{s} - \sqrt{s_0 - s}}{\sqrt{s} + \sqrt{s_0 - s}}$, $s_0 = 1.45$ GeV,

above 932 MeV: K-matrix approach,

Matching point at 932 MeV,

Fits: FDR + sum rules + Roy + GKPY + exp. data, 7 waves ($S - G$), 52 parameters,

main point of discussion between Bern and Madrid group: errors and S_0 phase shift at 800 MeV.
phase shifts for the S_0-wave

- for $m_{\pi\pi} < 932$ MeV: $\cot\delta(s) = \frac{s^{1/2}}{2k} \frac{m_{\pi}^2}{s - \frac{1}{2} z_0^2}$

$$\left[\frac{z_0^2}{m_{\pi} \sqrt{s}} + B_0 + B_1 w(s) + B_2 w(s)^2 \right],$$

$z_0 \approx m_{\pi} \leftarrow$ Adler zero,

- $s \rightarrow w(s) = \frac{\sqrt{s} - \sqrt{s_0 - s}}{\sqrt{s} + \sqrt{s_0 - s}}$, $s_0 = 1.45$ GeV,

- above 932 MeV: K-matrix approach,

- Matching point at 932 MeV,

- Fits: FDR + sum rules + Roy + GKPY + exp. data, 7 waves ($S - G$), 52 parameters,

- main point of discussion between Bern and Madrid group: errors and S_0 phase shift at 800 MeV
phase shifts for the S_0-wave

- for $m_{\pi\pi} < 932$ MeV: $\cot\delta(s) = \frac{s^{1/2}}{2k} \frac{m_{\pi}^2}{s - \frac{1}{2}z_0^2}$

\[
\left[\frac{z_0^2}{m_{\pi} \sqrt{s}} + B_0 + B_1 w(s) + B_2 w(s)^2 \right],
\]

$z_0 \approx m_\pi \leftarrow$ Adler zero,

- $s \rightarrow w(s) = \sqrt{s/\sqrt{s_0 - s}}$, $s_0 = 1.45$ GeV,

- above 932 MeV: K-matrix approach,

- Matching point at 932 MeV,

- Fits: FDR + sum rules + Roy + GKPY + exp. data, 7 waves (S–G), 52 parameters,

- main point of discussion between Bern and Madrid group: errors and S_0 phase shift at 800 MeV
Decomposition of Roy’s and GKPY eqs: \(S_0 \)-wave

\[f_\ell^I(s) = \frac{\sqrt{3}}{2\sqrt{s-4}} \left[\eta_\ell^I(s) e^{2i\delta_\ell^I(s)} - 1 \right] \rightarrow \text{Re} f_\ell^I(s) \text{ should be smaller than } \approx 0.6 \]

- the Roy’s equations need strong cancellations between \(ST \) and \(KT \)
Decomposition of Roy’s and GKPY eqs: S0-wave

\[f^I_\ell(s) = \frac{\sqrt{s}}{2i\sqrt{s^2-4}} \left[\eta^I_\ell(s)e^{2i\delta^I_\ell(s)} - 1 \right] \quad \rightarrow \quad \text{Re} f^I_\ell(s) \text{ should be smaller than } \approx 0.6 \]

- the Roy’s equations need strong cancellations between \(ST \) and \(KT \)
Decomposition of Roy’s and GKPY eqs: $S0$-wave

$$f^I_\ell(s) = \frac{\sqrt{s}}{2i\sqrt{s-4}} \left[\eta^I_\ell(s) e^{2i\delta^I_\ell(s)} - 1 \right] \rightarrow \text{Ref}^I_\ell(s) \text{ should be smaller than } \approx 0.6$$

- the Roy’s equations need strong cancellations between ST and KT
Decomposition of Roy’s and GKPY equations: P wave

Numerical results for recent fits
coupling of resonances (S_0 wave: σ, $f_0(980)$, $f_0(1400)$)

Example of numerical results

Conclusions

Robert Kamiński, IFJ PAN, Kraków, Poland

EPS09, Kraków 18.07.2009, page 14
Decomposition of Roy’s and GKPY equations: S_2-wave

\[\frac{s^{1/2} \eta \sin \delta}{2k} \]

\[s \ (m^2) \]

\[s \ (m^2) \]

Example of numerical results

Numerical results for recent fits

coupling of resonances (S_0 wave: σ, $f_0(980)$, $f_0(1400)$)
Output from Roy and GKPY equations, S_0-wave

Constrained Fits to Data (FDR+SR+Roy+GKPY)

- $\text{Roy}^{S_0 \text{ in}}$
- $\text{Roy}^{S_0 \text{ out}}$
- $\text{GKPY}^{S_0 \text{ in}}$
- $\text{GKPY}^{S_0 \text{ out}}$

$\overline{d^2} = 0.15$

$\overline{d^2} = 0.93$

Robert Kamiński, IFJ PAN, Kraków, Poland
EPS09, Kraków 18.07.2009, page 16

- $ST_{\text{Roy}}(s) = a_0^0 + \frac{1}{12}(2a_0^0 + 5a_2^0)(s - 4)$,
- $ST_{\text{GKPY}} = a_0^0 + 5a_0^2$

Roy’s equations have smaller errors below $s^{1/2} \approx 400$ MeV
GPKY equations have significantly smaller errors above $s^{1/2} \approx 400$ MeV
\[ST_{\text{Roy}}(s) = a_0 + \frac{1}{12} (2a_0 + 5a_2)(s - 4), \]
\[ST_{\text{GKPY}} = a_0 + 5a_2 \]

Roy’s equations have smaller errors below \(s^{1/2} \approx 400 \text{ MeV} \)
GPKY equations have significantly smaller errors above \(s^{1/2} \approx 400 \text{ MeV} \)
Dispersion relations with imposed crossing symmetry condition

Example of numerical results

Conclusions

Numerical results for recent fits coupling of resonances (S_0 wave: σ, $f_0(980)$, $f_0(1400)$)

Output from Roy and GKPY equations, S_0-wave

$$ST_{Roy}(s) = a_0^0 + \frac{1}{12} (2a_0^0 + 5a_2^0)(s - 4),$$

$$ST_{GKPY} = a_0^0 + 5a_2^0$$

Roy’s equations have smaller errors below $s^{1/2} \approx 400$ MeV

GPKY equations have significantly smaller errors above $s^{1/2} \approx 400$ MeV
Output from Roy and GKPY equations, S0-wave

- $S_{Roy}(s) = a_0^0 + \frac{1}{12} (2a_0^0 + 5a_2^0)(s - 4)$,
- $S_{GKPY} = a_0^0 + 5a_2^0$
- Roy’s equations have smaller errors below $s^{1/2} \approx 400$ MeV
- GPKY equations have significantly smaller errors above $s^{1/2} \approx 400$ MeV
Example of numerical results

Conclusions

Constrained Fits to Data (FDR+SR+Roy+GMKPY)

$\sigma^2 = 0.20$

Constrained Fits to Data (FDR+SR+Roy+GKPY)

$\sigma^2 = 0.77$

$ST_{Roy}(s) = \frac{1}{72}(2a_0^0 + 5a_2^0)(s - 4)$,

$ST_{GKPY} = \frac{1}{2}a_0^0 + \frac{10}{4}a_2^0$
Example of numerical results

Conclusions

Numerical results for recent fits
coupling of resonances (S_0 wave: σ, $f_0(980)$, $f_0(1400)$)

Output from Roy and GKPY equations, P-wave

$ST_{\text{Roy}}(s) = \frac{1}{72} (2a_0^0 + 5a_2^0)(s - 4)$,

$ST_{\text{GKPY}} = \frac{1}{2} a_0^0 + \frac{10}{4} a_2^0$

Robert Kamiński, IFJ PAN, Kraków, Poland

EPS09, Kraków 18.07.2009, page 17
Numerical results for recent fits of $\pi \pi$ amplitudes from experimental data only.

Dispersion relations with imposed crossing symmetry condition.

Example of numerical results.

Conclusions.

Constrained Fits to Data (FDR+SR+Roy+GKPY).

output from Roy and GKPY equations, S_2-wave.

$ST_{Roy}(s) = a_0^2 - \frac{1}{24} (2a_0^0 + 5a_2^0)(s - 4),$

$ST_{GKPY} = a_0^0 + \frac{1}{2} a_2^0.$
Example of numerical results

Conclusions

ππ amplitudes from experimental data only
Dispersion relations with imposed crossing symmetry condition

numerical results for recent fits
coupling of resonances (S0 wave: \(\sigma, f_0(980), f_0(1400) \))

output from Roy and GKPY equations, S2-wave

\[
ST_{Roy}(s) = a_0^2 - \frac{1}{24} (2a_0^0 + 5a_2^0)(s - 4),
\]

\[
ST_{GKPY} = a_0^0 + \frac{1}{2} a_0^2
\]
Continuation to the complex s plane:

$Im(s_{pole})$:
- ROY: -255 ± 14 MeV
- GKPY: -251 ± 12 MeV

$Re(s_{pole})$:
- ROY: 459 ± 31 MeV
- GKPY: 467 ± 11 MeV
Continuation to the complex s plane:

$\text{Im}(s_{\text{pole}})$:
- ROY: -255 ± 14 MeV
- GKPY: -251 ± 12 MeV

$\text{Re}(s_{\text{pole}})$:
- ROY: 459 ± 31 MeV
- GKPY: 467 ± 11 MeV
The results from the GKPY Eqs. with the CONSTRANGED Data Fit input

Continuation to the complex s plane:

$$\text{Im}(s_{\text{pole}}):$$
- ROY: -255 ± 14 MeV
- GKPY: -251 ± 12 MeV

$$\text{Re}(s_{\text{pole}}):$$
- ROY: 459 ± 31 MeV
- GKPY: 467 ± 11 MeV
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),
- Let’s us consider:
- 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
- 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

- Let’s assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n)$ - Jost functions)
- Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),
- then $\frac{g_i g_j}{4\pi} = i \sqrt{s_{pole}} \lim_{s \to s_{pole}} \left[(s - s_{pole}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]
- Let’s take σ pole: but which one?
 - 1-channel case → TWO poles (at k_π and $-k_\pi^* \leftrightarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
 - 2-channel case → FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_{K}^2}$),
 - 3-channel case → EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),
- 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
- 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

Let’s assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n)$ - Jost functions)

Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

then $\frac{g_i g_j}{4\pi} = i \sqrt{s_{pole}} \lim_{s \rightarrow s_{pole}} \left[(s - s_{pole}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]$

Let’s take σ pole: but which one?

- 1-channel case → TWO poles (at k_π and $-k^*_\pi \leftarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
- 2-channel case → FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k^2_\pi + m^2_\pi - m^2_K}$),
- 3-channel case → EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),
- 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
- 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

Let’s assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n) - Jost functions)

Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

then $\frac{g_ig_j}{4\pi} = i\sqrt{s_{pole}} \lim_{s \to s_{pole}} \left[(s - s_{pole}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]

Let’s take σ pole: but which one?
- 1-channel case \rightarrow TWO poles (at k_π and $-k_\pi^*$ $\leftrightarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
- 2-channel case \rightarrow FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),
- 3-channel case \rightarrow EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
Example of numerical results

Conclusions

numerical results for recent fits
coupling of resonances (S0 wave: \(\sigma, f_0(980), f_0(1400)\))

How to calculate couplings? general recipe:

1. 1-channel case \((\pi\pi)\) up to the \(K\bar{K}\) threshold \((\approx 991 \text{ MeV})\),
2. 2-channel case \((\pi\pi \ \text{and} \ K\bar{K})\) up to the about 1300-1400 MeV,
3. 3-channel case \((\pi\pi, K\bar{K} \ \text{and effective} \ \sigma\sigma)\)

Let’s us consider:

- Let’s assume we have defined \(S\) matrix, e.g. \(S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n) - \text{Jost functions})\)
- Let’s assume we have found a pole at \(s_{\text{pole}}\) (zero of denominator - COMMON for all channels!),
- then \(\frac{g_ig_j}{4\pi} = i\sqrt{s_{\text{pole}}} \lim_{s\rightarrow s_{\text{pole}}} \left[(s - s_{\text{pole}}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]\)
- Let’s take \(\sigma\) pole: but which one?
 - 1-channel case \(\rightarrow\) TWO poles \((at k_\pi \ \text{and} \ -k_\pi^* \leftrightarrow S^*(k) = S(-k^*)\) lying symmetrically to conjugated zeros,
 - 2-channel case \(\rightarrow\) FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros \((k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2})\),
 - 3-channel case \(\rightarrow\) EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),

 Let’s us consider:
 - 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
 - 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

- Let’s assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1\ldots k_n) - Jost functions)$

- Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

 then $\frac{g_i g_j}{4\pi} = i \sqrt{s_{pole}} \lim_{s \to s_{pole}} \left[(s - s_{pole}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]$

- Let’s take σ pole: but which one?
 - 1-channel case \Rightarrow TWO poles (at k_π and $-k_\pi^*$ $\leftrightarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
 - 2-channel case \Rightarrow FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),
 - 3-channel case \Rightarrow EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),
- Let’s us consider:
 - 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
 - 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

- Let’s assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n)$ - Jost functions)

- Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

 \[
 \text{then } \frac{g_i g_j}{4\pi} = i \sqrt{s_{\text{pole}}} \lim_{s \to s_{\text{pole}}} \left[(s - s_{\text{pole}}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]
 \]

- Let’s take σ pole: but which one?
 - 1-channel case \rightarrow TWO poles (at k_π and $-k_\pi^*$ $\leftarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
 - 2-channel case \rightarrow FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),
 - 3-channel case \rightarrow EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),
- 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
- 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

Let's assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n) - \text{Jost functions})$

Let's assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

then $\frac{g_i g_j}{4\pi} = i \sqrt{s_{\text{pole}}} \lim_{s \rightarrow s_{\text{pole}}} \left[(s - s_{\text{pole}}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]$

Let's take σ pole: but which one?
- 1-channel case \rightarrow TWO poles (at k_π and $-k_\pi^*$ $\leftarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
- 2-channel case \rightarrow FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),
- 3-channel case \rightarrow EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

1. Let's us consider:
 - 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),
 - 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
 - 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

2. Let's assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi, k_K, k_3)}{D(k_\pi, k_K, k_3)} (D(k_1...k_n) -$ Jost functions$)$

3. Let's assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

4. then $\frac{g_ig_j}{4\pi} = i\sqrt{s_{pole}} \lim_{s \to s_{pole}} \left[(s - s_{pole}) \frac{S_{ij}}{\sqrt{k_ik_j}} \right]$

5. Let's take σ pole: but which one?
 - 1-channel case → TWO poles (at k_π and $-k_\pi^\ast$ ↔ $S^\ast(k) = S(-k^\ast)$) lying symmetrically to conjugated zeros,
 - 2-channel case → FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),
 - 3-channel case → EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

- 1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),

- Let's us consider:
 - 2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,
 - 3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

- Let's assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1...k_n) - Jost functions)$

- Let's assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

- then $\frac{g_i g_j}{4\pi} = i \sqrt{s_{pole}} \lim_{s \rightarrow s_{pole}} [(s - s_{pole}) \frac{S_{ij}}{\sqrt{k_i k_j}}$

- Let's take σ pole: but which one?
 - 1-channel case \rightarrow TWO poles (at k_π and $-k_\pi^*$ $\leftarrow S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,
 - 2-channel case \rightarrow FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),
 - 3-channel case \rightarrow EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros

Robert Kamiński, IFJ PAN, Kraków, Poland

EPS09, Kraków 18.07.2009, page 20
How to calculate couplings? general recipe:

1. Let’s assume we have defined S matrix, e.g. $S_{\pi\pi} = \frac{D(-k_\pi,k_K,k_3)}{D(k_\pi,k_K,k_3)} (D(k_1…k_n) - Jost functions)$

2. Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

3. then $\frac{g_ig_j}{4\pi} = i\sqrt{s_{pole}} \lim_{s\rightarrow s_{pole}} \left((s - s_{pole}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right)$

Let’s take σ pole: but which one?

1. 1-channel case → TWO poles (at k_π and $-k_\pi^*$) lying symmetrically to conjugated zeros,

2. 2-channel case → FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_{K^0}^2}$),

3. 3-channel case → EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
How to calculate couplings? general recipe:

1-channel case ($\pi\pi$) up to the $K\bar{K}$ threshold (≈ 991 MeV),

Let’s us consider:

2-channel case ($\pi\pi$ and $K\bar{K}$) up to the about 1300-1400 MeV,

3-channel case ($\pi\pi$, $K\bar{K}$ and effective $\sigma\sigma$)

Let’s assume we have defined S matrix, e.g.

$$S_{\pi\pi} = \frac{D(-k_\pi, k_K, k_3)}{D(k_\pi, k_K, k_3)} (D(k_1...k_n) - \text{Jost functions})$$

Let’s assume we have found a pole at s_{pole} (zero of denominator - COMMON for all channels!),

then

$$\frac{g_i g_j}{4\pi} = i \sqrt{s_{\text{pole}}} \lim_{s \to s_{\text{pole}}} \left[(s - s_{\text{pole}}) \frac{S_{ij}}{\sqrt{k_i k_j}} \right]$$

Let’s take σ pole: but which one?

1-channel case → TWO poles (at k_π and $-k_\pi^*$ \leftrightarrow $S^*(k) = S(-k^*)$) lying symmetrically to conjugated zeros,

2-channel case → FOUR poles LYING NOT SYMMETRICALLY to corresponding zeros ($k_K = \pm \sqrt{k_\pi^2 + m_\pi^2 - m_K^2}$),

3-channel case → EIGHT(!) poles LYING NOT SYMMETRICALLY to corresponding zeros
What to do?

A) to use amplitudes directly from parameterizations e.g.
- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:
- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.

- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:

- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.

- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:

- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.

- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

- Z. Xiao, H.-Q. Zheng, Commun. Theor. Phys. 48, 685 (2007), "The Use of dispersion relations in the $\pi\pi$ and $K\bar{K}$ coupled channel system"

Let’s believe that:

- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.
- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:
- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

- A) to use amplitudes directly from parameterizations e.g.
 - one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
 - then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the \(\pi\pi \), \(K\bar{K} \) and \(\sigma\sigma \) channels

- B) to use output amplitudes from dispersion relations e.g.
 - Z. Xiao, H.-Q. Zheng, Commun. Theor. Phys. 48, 685 (2007), "The Use of dispersion relations in the \(\pi\pi \) and \(K\bar{K} \) coupled channel system"

Let’s believe that:
- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.

- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:

- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.
 one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
 then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:
 results from A) and B) are the same (or at least very similar) and
 one can calculate errors of couplings in methods A) and B)
What to do?

A) to use amplitudes directly from parameterizations e.g.

- one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
- then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:

- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
What to do?

- A) to use amplitudes directly from parameterizations e.g.
 - one can improve coupled channel models using strong constraints from dispersion relations (i.e. refit model predictions),
 - then make full analysis of singularities of S-matrix elements and calculate couplings of the most prominent poles to the $\pi\pi$, $K\bar{K}$ and $\sigma\sigma$ channels

- B) to use output amplitudes from dispersion relations e.g.

Let’s believe that:
- results from A) and B) are the same (or at least very similar) and
- one can calculate errors of couplings in methods A) and B)
Conclusions

- Dispersion relations offer strong constraints for amplitudes.
 - Small errors of σ and of $a_0^0 = 0.222 \pm 0.009$, $a_0^2 = -0.045 \pm 0.008$,
- One can use them even where is no data,
- We do not use any ChPT predictions,
- Only analyticity! Crossing symmetry is for free,
- One can combine data from complete set of partial waves ($S - G$),
- We recommend GKPY equations as "more demanding" above ~ 400 MeV.
Conclusions

- dispersion relation offer strong constraints for amplitudes
 → small errors of σ and of $a_0^0 = 0.222 \pm 0.009$, $a_0^2 = -0.045 \pm 0.008$,
- one can use them even where is no data,
- we do not use any ChPT predictions,
- only analyticity! crossing symmetry is for free,
- one can combine data from complete set of partial waves $(S - G)$,
- we recommend GKPY equations as "more demanding" above ~ 400 MeV
Conclusions

- dispersion relation offer strong constraints for amplitudes → small errors of σ and of $a_0^0 = 0.222 \pm 0.009$, $a_0^2 = -0.045 \pm 0.008$,
- one can use them even where is no data,
- we do not use any ChPT predictions,
- only analyticity! crossing symmetry is for free,
- one can combine data from complete set of partial waves ($S - G$),
- we recommend GKPY equations as "more demanding" above ~ 400 MeV
Conclusions

- dispersion relation offer strong constraints for amplitudes → small errors of σ and of $a_0^0 = 0.222 \pm 0.009$,
 $a_0^2 = -0.045 \pm 0.008$,
- one can use them even where is no data,
- we do not use any ChPT predictions,
- only analyticity! crossing symmetry is for free,
- one can combine data from complete set of partial waves $(S - G)$,
- we recommend GKPY equations as "more demanding" above ~ 400 MeV.
Conclusions

- dispersion relation offer strong constraints for amplitudes
 → small errors of σ and of $a_0^0 = 0.222 \pm 0.009$, $a_0^2 = -0.045 \pm 0.008$,
- one can use them even where is no data,
- we do not use any ChPT predictions,
- only analyticity! crossing symmetry is for free,
- one can combine data from complete set of partial waves ($S - G$),
- we recommend GKPY equations as "more demanding"
 above ~ 400 MeV
Conclusions

- dispersion relation offer strong constraints for amplitudes
 → small errors of σ and of $a_0^0 = 0.222 \pm 0.009$, $a_0^2 = -0.045 \pm 0.008$,
- one can use them even where is no data,
- we do not use any ChPT predictions,
- only analyticity! crossing symmetry is for free,
- one can combine data from complete set of partial waves $(S - G)$,
- we recommend GKPY equations as "more demanding" above ~ 400 MeV