Three-Loop Corrections to the Mass of the Light Higgs Boson in the MSSM

Philipp Kant

in collaboration with

R. V. Harlander, L. Mihaila, M. Steinhauser

Universität Karlsruhe, TTP

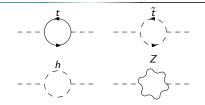
EPS-HEP 2009, Krakow

MSSM Higgs sector: 2 Higgs doublet model *h*, *H*, *A*, H^{\pm} masses and mixings are very constrained

• $M_h \leq M_Z$ at tree level

MSSM Higgs sector: 2 Higgs doublet model *h*, *H*, *A*, H^{\pm} masses and mixings are very constrained

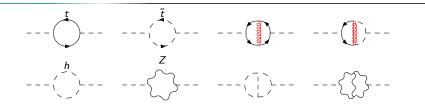
- $M_h \leq M_Z$ at tree level
- radiative corrections depend on SUSY breaking


MSSM Higgs sector: 2 Higgs doublet model *h*, *H*, *A*, H^{\pm} masses and mixings are very constrained

- $M_h \leq M_Z$ at tree level
- radiative corrections depend on SUSY breaking
- experimentally: M_h precision observable $\delta M_h \approx 100 - 200 \text{ MeV}$ for light Higgs at LHC
 - need to match this precision!

Radiative Corrections to M_h

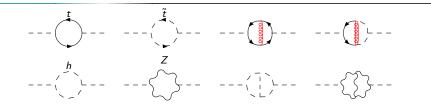
corrections from heavy particles


[Ellis,Ridolfi,Zwirner 1991; Haber,Hempfling 1991; Okada,Yamaguchi,Yanagida 1991, Chankowski,Pokorski,Rosiek 1994; Dabelstein 1995; Bagger,Matchev,Pierce,Zhang 1997]

top quark and its superpartners dominate: shift of +35 GeV

Radiative Corrections to M_h

 corrections from heavy particles


 [Ellis,Ridolfi,Zwirner 1991; Haber,Hempfling 1991; Okada,Yamaguchi,Yanagida 1991, Chankowski,Pokorski,Rosiek 1994; Dabelstein 1995; Bagger,Matchev,Pierce,Zhang 1997]
 top quark and its superpartners dominate: shift of +35 GeV

even more important at two loops (α_s) [Brignole, Carena, Casas, Dedes, Degrassi, Espinosa, Haber, Hempfling, Heinemeyer, Hoang, Hollik, Martin, Quirós, Riotto, Rzehak, Slavich, Wagner, Weiglein, Zhang, Zwirner, ... '94-today]

Radiative Corrections to M_h

 corrections from heavy particles
 [Ellis,Ridolfi,Zwirner 1991; Haber,Hempfling 1991; Okada,Yamaguchi,Yanagida 1991, Chankowski,Pokorski,Rosiek 1994; Dabelstein 1995; Bagger,Matchev,Pierce,Zhang 1997]

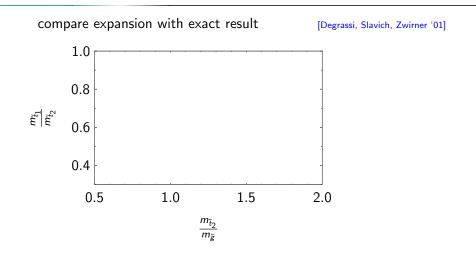
- top quark and its superpartners dominate: shift of +35 GeV
- even more important at two loops (α_s) [Brignole, Carena, Casas, Dedes, Degrassi, Espinosa, Haber, Hempfling, Heinemeyer, Hoang, Hollik, Martin, Quirós, Riotto, Rzehak, Slavich, Wagner, Weiglein, Zhang, Zwirner, ... '94-today]
- Sloop LL and NLL through renormalisation group
- remaining uncertainty: $\approx 3 5 \text{ GeV} (LHC: 100 200 \text{ MeV})$

[Martin '07]

full calculation of all three-loop contributions is not feasible

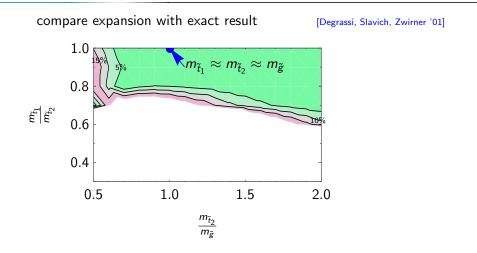
- restrict to t and \tilde{t} loops
- virtual particles: t, \tilde{t} , g, \tilde{g} , q, \tilde{q}

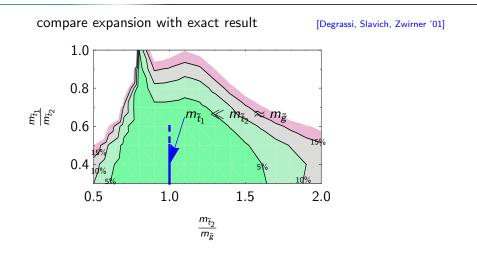
full calculation of all three-loop contributions is not feasible

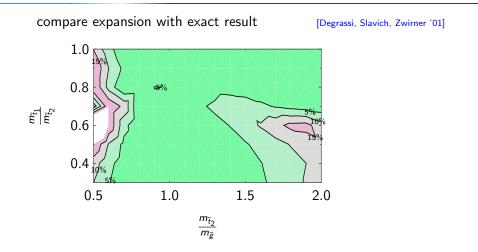

- restrict to t and \tilde{t} loops
- virtual particles: t, \tilde{t} , g, \tilde{g} , q, \tilde{q}
- can't do integrals for arbitrary masses
 - assume fixed hierarchies among the superpartner masses

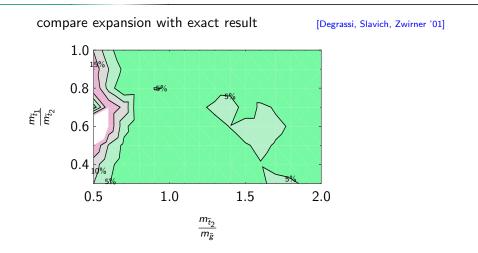
$$m_q = 0, \quad m_t \ll m_{\tilde{t}_1} \approx m_{\tilde{t}_2} pprox m_{\tilde{g}} pprox m_{\tilde{q}}$$

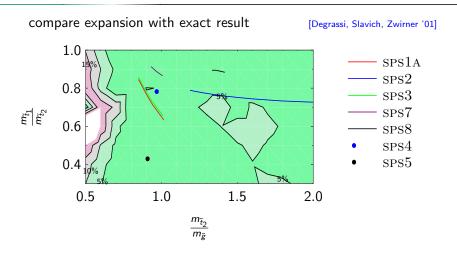
 $m_t \ll m_{\tilde{t}_1} \ll m_{\tilde{t}_2} pprox m_{\tilde{g}} \ll m_{\tilde{q}}$


asymptotic expansions lead to one-scale integrals

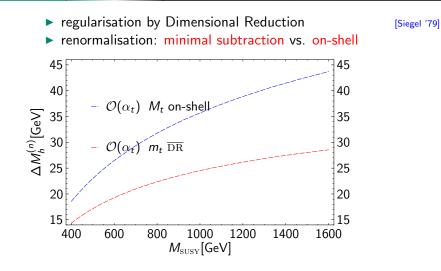




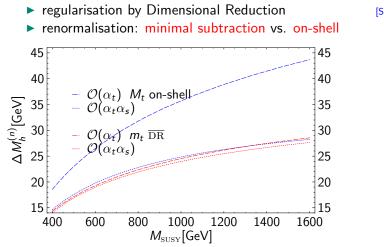




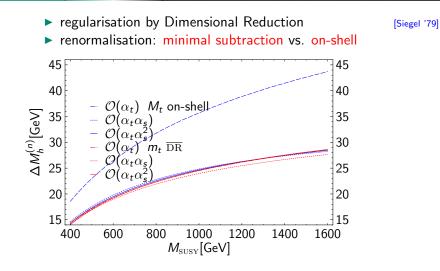
error at two loops: $\lesssim 5\%$

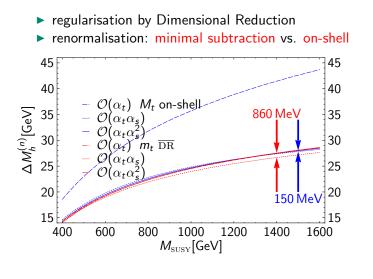

- regularisation by Dimensional Reduction
- renormalisation: minimal subtraction vs. on-shell

[Siegel '79]



<u> «Kit</u>


<u> «Kit</u>


[Siegel '79]

<u> «Kit</u>

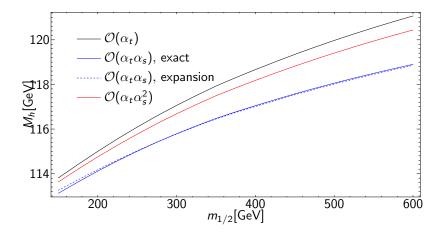
[Siegel '79]

choice: minimal subtraction using Dimensional Reduction (\overline{DR})

Philipp Kant Three-Loop Corrections to the Mass of the Light Higgs Boson in the MSSM

generate diagrams ... lots (30,717) QGRAF

[Nogueira]


- asymptotic expansions Q2E, EXP [Harlander, Seidensticker]
- three-loop one-scale integrals MINCER, MATAD, FORM

[Larin, Tkachov; Steinhauser; Vermaseren]

M_h for Benchmark Line SPS2 – PRELIMINARY

Conclusion

• three-loop calculation of M_h in the MSSM

- effect of about 500 MeV
- cannot be neglected
- scheme dependency greatly reduced
- feasible to cover whole SPS range

Conclusion

• three-loop calculation of M_h in the MSSM

- effect of about 500 MeV
- cannot be neglected
- scheme dependency greatly reduced
- feasible to cover whole SPS range
- checks to our results:
 - agreement with literature two-loop
 3-loop LL and NLL
 - calculated in general covariant gauge
 - calculation in unbroken SUSY: corrections vanish

[Degrassi, Slavich, Zwirner '01] [Martin '07]

