

Search for BSM Physics (non-SUSY) in Final States with Photons at the Tevatron

Enrique Palencia Fermilab

for the CDF and DØ Collaborations

European Physical Society HEP 2009, Kraków (Poland), July 16-22, 2009

Motivation: Many models with final state photons!!!

- **SUSY** (See Andrey Loginov's talk)
 - \diamondsuit mSUGRA: $\chi_2^0 \longrightarrow \gamma \chi_1^0$
 - \Diamond GMSB (Gauge-Mediated Supersymmetry Breaking): $\chi_1^0 \longrightarrow \gamma G$
- Compositeness: $X^* \longrightarrow \gamma X$

 $\diamond~ee\gamma$, $\mu\mu\gamma$

- Large Extra Dimensions: γ + MET, $\gamma\gamma$
- Higgs: $\gamma\gamma$, $\gamma\gamma ee$, $\gamma\gamma\mu\mu$, $\gamma\gamma e\nu$, $\gamma\gamma\gamma\gamma$
- Technicolor: ω_T , $\rho_T \longrightarrow \gamma \pi_T$

 $\diamond \gamma bb, \gamma jj, \gamma tt, \gamma \gamma \gamma \dots$

- 4th Generation: $b' \longrightarrow b\gamma$
 - $\diamond \gamma \gamma bb$, $ee\gamma bb$, $\mu\mu\gamma bb$, $jj\gamma\gamma bb$

Enrique Palencia, Fermilab

Photons at the Tevatron

• Photon is one of the 7 fundamental objects at a collider

- Photon (γ) \equiv shower in the EM calorimeter with no associated track
- Backgrounds from jet $\rightarrow \pi^0 \rightarrow \gamma \gamma$ and electrons with not reconstructed track
 - Reduced with photon isolation, hits in the preshower detector, ...

Enrique Palencia, Fermilab

IED in γ + MET **S**

- This signature arises from the process $q\bar{q} \longrightarrow \gamma G_{kk}$
 - G all possible integer spin states from 0 to 2
- Both experiments perform similar event selection ($E_T^{\gamma} > 90 \text{ GeV}$) \diamond CDF: MET>50 GeV, 2.0 fb⁻¹ # Events CDF

```
\diamond D0: MET>70 GeV, 2.7 fb^{-1}
```

# Events	CDF	D0
Predicted	46.3 ± 3.0	49.9 ± 4.1
Observed	40	51

q

 G_{KK}

 95% C.L. lower limits on the fundamental 4+n dimensional Planck scale M_D (in GeV)

$$M_{Pl}^2 \sim R^n M_D^{n+2}$$

95% C.L. Lower Limits (GeV)		
n	CDF	D0
2	1080	900
6	970	831

- Look for deviations from the SM in the 2D di-EM mass and $|cos(\theta^*)|$ distributions
- # of events is consistent with the # of expected events from the SM expectation

Set 95% C.L. lower limits on the effective Planck scale, M_s :

GRW (leading order, n_d independent): $M_s > 1.62$ TeV

HLZ (sub-leading, n_d independent): $M_s > 2.1$ (1.29) TeV for $n_d = 2$ (7)

PRL 102, 051601 (2009)

Enrique Palencia, Fermilab

EPS 2009, Kraków (Poland), July 17, 2009

2

1.5

💷 Fermiophobic Higgs in Diphotons 🍱

- Diphoton final state appealing since photon ID efficiency and energy resolution is better than jets
- In SM, B($H \rightarrow \gamma \gamma$)~ 0.2% for M_H=120 GeV
 - ♦ See Michele Giunta's talk
- Fermiophobic Higgs models does not allow couplings to fermions
 - \diamond No gluon fusion
 - Only production processes possible are
 - Associated production with a W or Z boson
 - Vector boson fusion (VBF)

 \diamond Reduction in production cross section but B($H \longrightarrow \gamma \gamma$) is greatly enhanced

Since p_T(γγ) is large, both experiments cut very hard on p_T(γγ) and search for a narrow resonance in M(γγ)

Fermiophobic Higgs

• CDF: $p_T(\gamma\gamma) > 75$ GeV \Rightarrow remove $\sim 99.5\%$ of the bkg ($\sim 30\%$ of signal remains)

Look for a resonance in the diphoton mass distribution

Fermiophobic Higgs

• No evidence of resonance is found. Set 95% C.L. lower limits

Submitted to PRL (arXiv:0905.0413 [hep-ex])

	CDF (3.0 fb $^{-1}$)	D0 (4.2 fb ⁻¹)
M(h _f) lower limit (GeV)	106	102.5

• Both analysis are now sensitive to $M(h_f) \sim 110$ GeV (inaccessible to LEP)

Signature Based Searches

- So far, have tested a couple of non standard models, but...
- There are reasons for not picking a given exotic model
 - ♦ Which one? There are a lot!
 - ♦ New models may exist in the future
 - ♦ Is not the Standard model a good model to test?
- CDF has performed some signature-based searches
 - \diamond lepton + γ + *b*-jet + MET
 - $\diamond \gamma$ + jet + *b*-jet + MET

- Compare the inclusive production of events with a lepton, photon, MET and a b jet, to SM predictions
- Basic selection

 \diamond Central e (μ) with E_T^e (P_T^μ) > 20 GeV

- \diamond Central photon with $E_T^{\gamma} > 10 \text{ GeV}$
- \diamond A *b*-tagged jet with $E_T^j > 15$ GeV

 \diamond MET > 20 GeV

# events	$e\gamma b {\it E}_T$	$\mu\gamma b {\it E}_T$	$(e+\mu)\gamma b {\rm E}_{T}$
Predicted	18.4 ± 2.4	12.6 $^{+1.9}_{-1.6}$	$31.0{+4.1 \atop -3.9}$
Observed	16	12	28

Consistent with the SM

Enrique Palencia, Fermilab

$\textcircled{0}t\overline{t}$ + γ

• $H_T > 200$ GeV, N(jets) > 2 $\Longrightarrow t\bar{t} + \gamma$ enhanced sample

# events	$e\gamma b {f E}_T$	$\mu\gamma b {\it E}_T$	$(e+\mu)\gamma b {\it E}_T$
Predicted	6.7 ± 1.4	$4.4 {+1.3 \atop -0.8}$	11.2 $^{+2.3}_{-2.1}$
Observed	8	8	16

- Probability, assuming there is no SM tt̄γ production, for the bkgs. alone to produce as many events as observed (16), is 1% (2.3σ)
- Assuming that the difference between the non top bkg. and the number of observed events is due to $t\bar{t}\gamma$ SM production, $\sigma_{t\bar{t}\gamma} = 0.15 \pm 0.08$ pb

$$\diamond~\sigma_{tar{t}\gamma}(\mathsf{SM})$$
 = 0.080 \pm 0.011 pb

Submitted to PRD (arXiv:0906.0518)

Enrique Palencia, Fermilab

$\mathbf{O} \gamma \mathbf{+} \mathbf{jet} \mathbf{+} \mathbf{b} \mathbf{-} \mathbf{jet} \mathbf{+} \mathbf{MET}$

- Very few SM processes lead to a γ +b+jet+MET (most due to mismeasured jets)
- Basic selection
 - \diamondsuit Central photon with $\mathsf{E}_T^\gamma > 25~\mathrm{GeV}$
 - \diamondsuit At least 2 jets with $\mathsf{E}_T^j > 15~\mathrm{GeV}$
 - ♦ At least 1 *b*-tagged jet
 - \diamond MET > 25 GeV
- $607 \pm 74 \pm 86$ (617) exp. (obs.) events

Consistent with the SM even with additional

Submitted to PRD (arXiv:0905.0231)

Conclusions

- Tevatron is performing better than ever
- Well understood detectors taking data with very high efficiency
- Large photon search program at the Tevatron covering many final states and testing several exotic models
- So far, everything looks consistent with the SM.
- But still lots of data to record and analyze
 - > expect to almost double the dataset by the end of the run

http://www-cdf.fnal.gov/physics/exotic/exotic.html http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

BACK-UP SLIDES

Tevatron Performance

- $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV
- Tevatron is performing better than ever \diamondsuit Peak luminosity $\sim 360 \times 10^{30} \text{cm}^{-2} \text{s}^{-1}$
 - \diamond Expected 7-8 fb⁻¹ by end of 2009
 - \diamond Possibly run in 2010-11 (9-11 fb $^{-1}$)
- Tevatron delivered \sim 6.9 fb $^{-1}$
 - \diamond Collected \sim 5.8 fb $^{-1}$
- Analyses shown here use 1-4 fb $^{-1}$

CDF and DØ Detectors

- Two multipurpose detectors at Tevatron collecting data efficiently
- Large acceptance and good ID for leptons
 - Tracking and EM calorimeter
 - ♦ Muon systems
- Good calorimetry for jet energy resolution
- Silicon detectors for b-jet tagging

• Data taking efficiency \sim 85-90%

Enrique Palencia, Fermilab

How to Supress Photon Backgrounds

- Single photons are note produced in hard scattering processes
- π^0 ($\gamma\gamma$), $K_s(\pi^0\pi^0)$ and η ($\gamma\gamma$ or $\pi^0\pi^0\pi^0$) in jets. To supress these, we require:
 - ♦ Isolated photons
 - \diamondsuit Good shower χ^2 (good at low E $_T$)
 - Low # hits in the preshower detector (from conversions)
- Electron bremsstrahlung, FSR, tracking ineffiency...
 - Road from the EM cluster to the event vertex
 - Search for hits along the road
 - \diamond Reduces electron by a factor of 3-7

