The Extreme Universe

Ultra-High Energy Cosmic Ray & Neutrino Observations

Karl-Heinz Kampert University of Wuppertal EPS-HEP 2009, Cracow (Poland)

e-mail: kampert@uni-wuppertal.de

Outline

- The Extreme Universe: Science Case
 UHECRs
 - Latest News from Auger, HiRes and TA
 - Energy Spectra: GZK-Effect
 - Anisotropies: Search for Sources
 - Mass-Compos.: Puzzling Results
 - Photon Limits: Propagation and TopDown Tests
- Tests of Fundamental Physics
- Neutrino Astronomy
 - Latest Results from IceCube, ANTARES, Auger, ...
- Future Directions

Largely based on results presented at ICRC in Łódź, last week

All Particle Cosmic Ray Spectrum

All Particle Cosmic Ray Spectrum

Karl-Heinz Kampert

CR Absorption in CMB (GZK-Effect)

The GZK Horizon

UHECR Science Case

- Sources of most energetic CRs need to be nearby
 Deflections in magnetic fields are moderately weak
- Opportunity to identify sources by CR-Astronomy !
 need to measure: direction, energy, particle-type

By-Products:

• Do Particle Physics at the Highest Energies,

e.g. pA and v- cross-sections

- Probe Fundamental Physics, e.g. Tests of LIV
- Learn about Cosmic Environments, e.g. B-Fields

HiRes Experiment (Dugway, Utah)

HiRes-I 21 mirrors 1 ring, full azimuth, <u>3°-17° elevation</u> Sample & Hold DAQ System

HiRes-II 42 mirrors 2 rings, full azimuth, <u>3°-31° elevation</u> FADC DAQ System Took data: Dec. 1999-April 2006

Both: 5.1 m² mirrors, 16x16 PMTs

HR I+II data taking: June 1997-April 2006

Auger Hybrid Observatory (Argentina)

Auger Hybrid Observatory (Argentina)

24 fluorescence telescopes...

...1600 Water Cherenkov tanks

Pierre Auger Observatory

Minas

El Sosnear

~ 60 km.

LOMA AMARILLA

1600 SD stations (1.6 km spacing) = 3000 km² 24 FD telescopes

Fully Operational since June 2008

Malargüe

lariner

COIHUECO

Coihuec

10

LEONES

lub

K

0

MORADO

AGUA

los

DF

Telescope Array (Utah)

Exposures @ ICRC 2009

As a fct of energy...

 $\begin{array}{rrr} AGASA : HiRes : Auger \\ 1 & : 5 & : 10 \end{array}$

... and time

SIGHT

EPS-HEP 2009, Cracow (Poland)

Karl-Heinz Kampert

Hybrid: More than Sum of the Two

Surface Detecor Based:

- + High Statistics (24 hrs a day)
- + Simple geometrical exposure
- Calibration of Energy from EAS-simul.

Hybrid Based:

- + Well known calibration
- + Flat, well known aperture
- + Low energy threshold

Fluorescence Detecor Based:

- + High Resolution
- + Low energy threshold
- + Calibration by laboratory expt's
- about 15 % duty cycle
- complicated apertur

Ground Array calibrated by Fluorescence Obs.

EPS-HEP 2009, Cracow (Poland)

r [m]₆

Karl-Heinz Kampert

Hybrid Energy Spectrum

Comparison HiRes - Auger

Comparison HiRes - Auger

Energy [arb. units]

Comparison with Astrophys. Models

Simple models fit data surprisingly well
Constraining models needs composition measurement

UHEER Ansohoples

EPS-HEP 2009, Cracow (Poland)

Karl-Heinz Kampert

Auger Sky above 60 EeV

Auger Coll.; Science 318 (2007) 938 Auger Coll.; ICRC (2009)

27 events as of November 2007 (with Verón-Cetty-Verón catalogue)

58 events now (with Swift-BAT AGN density map)

Simulated data sets based on isotropy (I) and Swift-BAT model (II) compared to data (black line/point).

<10⁻⁵ samples of isotropic distr's give higher LL than data

However ...

Galactic Magnetic Fields are important

- Does GMF disturb the expected correlation of the highest energy cosmic rays (HECRs) with their sources (even if HECRs are mainly protons) ?
- Can there be differences between Southern and Northern sky?
- Can HECRs obtain information on GMF ?
- 0.2-0.3 µG near solar system; but mG parallel to galactic disk found

Centaurus A appears interesting

central AGN core now also seen by HESS and FERMI-LAT HESS @ ICRC09

Cen A brightest radio source; d~ 3.5 Mpc

EPS-HEP 2009, Cracow (Poland)

Karl-Heinz Kampert

UHEER Composition

EPS-HEP 2009, Cracow (Poland)

Karl-Heinz Kampert

Composition from X_{max} observations

Performed by HiRes, Auger and TA

Analysis of stereo data: $\sigma(X_{max}) = 20-25 \text{ g/cm}^2$

Composition from Xmax

Surprise: Very Small Fluctuations of X_{max}

Hints for increasing X-Section ?

Search for Photons

Motivation for Photon Search

- acceleration of nuclear primaries + photo-disintegration in CMB during propagation
 - → expect small fraction of photons
- non-acceleration models (decay/annihilation of primordial relicts; Super-Heavy Dark Matter)
 - → expect large fraction of photons

Z-Burst Models: interaction of EHE-v's with cosmogenic v's

 \rightarrow sensitive to v-mass and detection of cosmogenic v's

tests of fundamental physics

→ Lorentz-invariance Violation (LIV)

→ smoothness of space-time

Very good γ-Hadron Discrimination by X_{max} Measurements

Photon Upper Limits vs Predictions

Tests of Fundamental Physics

Lorentz Invariance Violation (I)

- LIV related to structure of space time near Planck scale
- Vacuum Cherenkov Radiation → expect strong E-losses

Karl-Heinz Kampert

• Particle dependent maximum $c_j \rightarrow GZK$ -effect altered^{**} $p + \gamma \rightarrow p + \pi$

Lorentz Invariance Violation (II)

LIV -> may modify photon dispersion relation

Galaverni & Sigl PRL 100 (2008)

$$\omega^2 = k^2 + m^2 + \xi_n k^2 (k/M_{Pl})^n$$

 \rightarrow affect the threshold for e⁺e⁻ pair production

EPS-HEP 2009, Cracow (Poland)

Karl-Heinz Kampert

v-Telescope Projects

ANTARES+NEMO+NESTOR:

Baikal

Joint effort for km³-scale detector KM3NeT

AMANDA/IceCube

Principle of Neutrino Detection

Water or Ice

U

Time & position of hits PMT amplitudes

Energy

 μ (~ ν) trajectory

43°,

IceCube at South-Pole

IceCube Observatory

Antares

- Detector at 2500 m depth
- Site 40 km SSE of Toulon
- 40 km data cable
- Counting room La Seyne-sur-Mer

All-sky map (6 months IceCube 2008, 40 strings)

175.5 days livetime,

6796 up-going events, 10981 down-going events

C. Spiering

5

4.5

3.5

3

2

1.5

1

0.5

2.5 0

All-sky map (6 months IceCube 2008, 40 strings)

Hottest location at r.a.=114.95°, dec.=15.35° Pre-trial $-\log_{10}(p-value) = 4.43$

all-sky p-value is $61\% \rightarrow$ not significant

C. Spiering

Point Sources limits/sensitivities

Diffuse Neutrino Fluxes

Neutrino Absorption in Earth

EPS-HEP 2009, Cracow (Poland)

EeV Neutrinos by Horizontal EAS

Only a neutrino can induce a young horizontal shower!

shower front

EPS-HEP 2009, Cracow (Poland)

EeV Neutrinos by Radio-Signals

UHE Diffuse Neutrino Flux Limits

EPS-HEP 2009, Cracow (Poland)

UHECRS

GZK-effect established

→ Filter to nearby sources But: steep spectrum above 60 EeV requires huge apertures

UHECR-Astronomy around the corner

→ CR sources will be identified, better knowledge of magn. fields required → projects with astronomers Want to to measure spectra/composition of individual sources

Auger-North + JEM-EUSO

New techniques

Radio observation of EAS may reduce costs

UHE-V'S

Present results from UHECR suggests a few v's year/km³

 → If sources are seen, another undisputable proof for CR-accelerators First 2 years of IceCube should tell...
 SN-explosion in Galaxy or LMC → hundreds of v's would be seen Competative Dark-Matter limits come for free

km3net + New Techniques

km3net large enough?

Acoustic a/o Radio techniques very attractive for huge volume instrumentation; but applicability to be proven...

Moon Regolith serves as v - Target

First observations performed already Will be fully exploited by LOFAR

Very exciting time also for Astroparticle Physics

