Observing signatures of Cosmic Rays using high-energy gamma-ray telescopes

Olaf Reimer Institute for Astro- and Particle Physics Leopold-Franzens-Universität Innsbruck &

Kavli Institute for Astroparticle Physics and Cosmology Stanford University

Astroparticle Physics with the photon messenger

The Fermi Gamma-Ray Space Telescope June 11, 2008 12:05 PM EDT; Cape Canaveral Large Area Telescope (LAT)

γ₁ incoming gamma ray

electron-positron pair

LAT images the sky one photon at a time: γ -ray converts in LAT to an electron and a positron; direction and energy of these particles tell us the direction and energy of the photon

1xx GeV to ~100 TeV – Imaging atmospheric Cherenkov telescopes TeV-scale EAS arrays with γ-hadron separation capability

Cosmic Ray Interactions with the Moon surface

γ -ray spectrum characteristic for moon limb or center interactions

E > 100 MeV 0.2º/bin

CR

CR

 $f_{>100 \text{ MeV}} = (1.06 \quad 0.2) \text{ x} 10^{-6} \text{ ph cm}^{-2} \text{s}^{-1}$

OSO-III 1967-1968

EGRET - 1991-2000

- ~1.4x10⁶ γ , ~65% interstellar emission from the Milkyway
- ~15% in resolved sources

large scale spatial agreement o.k.

- assumption of **dynamic balance*** resonably correct
- fraction of unresolved sources is small (unless distributed like the interstellar gas and uniform on a scale smaller than the instrumental PSF)

*dynamic balance between the binding forces of cosmic rays, kinetic motion & content of interstellar medium, and galactic magnetic fields. → the cosmic ray surface density is assumed to be proportional to that of the interstellar gas

A different approach: Solving the CR transport equation **Cosmic Ray propagation model** (e.g. GALPROP)

large scale spectral agreement only somewhat o.k.

- IC, electron bremsstrahlung, and nucleon-nucleon interaction (π^0 -decay) components confirmed: "pion bump" seen
- strong correlation of γ -emission with Galactic structural features

HOWEVER:

GeV excess left room for interpretation & speculation!

- 1. Hard nucleon injection spectrum?
- 2. Hard *electron* injection spectrum?
- 3. Atypical local p and e spectra?
- 4. Imperfect knowledge of π^{o} production
- 5. Unresolved GeV γ ray sources
- 6. Prosaic: Instrumental effect
- 7. Exiting: Manifestation of dark matter!

When you have eliminated the impossible, whatever remains, however improbable, must be the truth. Sherlock Holmes

Signature of DM annihilation

(de Boer et al. 2005)

... but met criticism early on:

B. Moore:

Proposed DM profile is **unstable** for considered timescales.

Bergstrøm et al. (JCAP 0605 (2006) :

Proposed DM overproduces antiproton flux (by factor 50-100!)

The Fermi sky after 9 month

EGRET GeV excess is not seen in $10^{\circ} \le |b| \le 20^{\circ}$, thus not an universal feature at gamma-ray sky \rightarrow standard CR interaction models adequate (which do justice to locally measured CR abundances, sec/prim ratios) \rightarrow Fermi/LAT errors are systematics dominated, estimated to ~10%

So we're left with conventional CR interaction physics!

- 1. Hard nucleon injection spectrum
- 2. Hard *electron* injection spectrum
- Atypical local p and e spectra affects diffuse g-ray sky only mildly
- 4. Imperfect knowledge of $pp \rightarrow \pi^{o} prod$.
- 5. Unresolved GeV γ ray sources
- 6. Instrumental effect charged particle background f(E)self-veto due to monolithic cal $\rightarrow A$
- 7. Manifestation of dark matter

Gamma-ray instruments hunting in CR territory: CR Iron abundance by H.E.S.S.

Gamma-ray instruments hunting in CR territory: CR Iron abundance by H.E.S.S.

particle interaction model dependent

→ Estimate uncertainty by using SIBYLL 2.1 and QGSJET

- Good agreement with other experimental results
- Most precise measurement of the Z > 24 spectrum at 13...200 TeV
- Future extension to 1PeV and composition measurements possible
- Direct Cherenkov light detection works!

Gamma-ray instruments hunting in CR territory: e⁺+e⁻ spectrum by H.E.S.S.

H.E.S.S. has measured cosmic-ray electrons between 340 GeV and 5 TeV

Systematic uncertainties include atmospheric variations, uncertainties in hadronic interaction models and H.E.S.S. energy scale uncertainty

H.E.S.S.: Smooth spectrum that steepens at 0.9 TeV

 $\Gamma_1 = 3.0 \quad 0.1_{stat.} \quad 0.3_{syst.}$ $\Gamma_2 = 4.1 \quad 0.3_{stat.} \quad 0.3_{syst.}$

Gamma-ray instruments hunting in CR territory: e++e⁻ spectrum by Fermi

• events for $e^+ e^-$ analysis required to fail ACD vetoes for selecting γ events; resulting γ contamination < 1%

• further cuts distinguish EM and hadron events; rejection 1:10³ up to 200 GeV; ~1:10⁴ at 1 TeV

No prominent spectral features between 20 GeV and 1 TeV.

Fermi and PAMELA e⁺/(e⁺+e⁻) data might require a new high-energy positron source

Nearby conventional astrophysical sources (e.g. pulsars) injecting required amounts of e⁺ and e⁻, injected spectrum & efficiency are very uncertain

very standard TeV electron propagation can have many stochastic realizations

Dark matter?

• annihilation; requires boost factors (either density or σv)

• decays;

Milagro's Surprising Cosmic Ray Anisotropy

- > Localized anisotropy on 5-10 deg size scale with a fractional excess up to 7e-4 above the cosmic ray background (15 σ)
- > Excess is not gamma rays, but hadronic cosmic rays (7 σ)
- > Different spectrum than cosmic rays (4 σ) that is harder up to ~10 TeV
- Cosmic Ray Propagation and/or Nearby source ?

Complementary dark matter search techniques in Fermi

Search Technique	advantages	challenges
Galactic center	Good statistics Uniquely studies location	Source confusion Non-DM astrophysics Diffuse galactic emission
Satellites, Subhalos	Low background Chance for unique ID	Low statistics Accomplish ID
Milky Way Halo	Large statistics	Diffuse galactic emission
Extragalactic diffuse	Large Statistics	Non-DM astrophysics, Diffuse galactic emission as foreground
Lines	No astrophysical uncertainties Unique source id	Low statistics Parameter space

Photons as the messenger of cosmic rays

Cosmic particle accelerators: ground-based Cherenkov astronomy

Stunning diversity of γ -ray sources between 150 GeV and 50 TeV !

Shell-type supernova remnants

SNR RXJ1713.7-3946 became archetypal

- Tight keV-TeV correlation
- No tight correlation with molecular material
- Inverse Compton implies (too?) low B-Field
- Spectral shape

[+electrons] [+electrons] [+protons] [+protons]

In the hadronic scenario, efficient proton acceleration up to 200 TeV is implied

Some older (T>10⁴ years) supernova remnants are detected by their interaction with a nearby molecular cloud

- The VHE γ-ray signal coincides with the molecular cloud (CO map), not with the radio shell.
 W28 by H.E.S.S.
 IC 443 by MAGIC/VERITAS
- In the preceding cases, OH masers show that molecular clouds are perturbed by SNR shocks

Hadronic origin of γ-rays likely

W28 (H.E.S.S.)

IC443 (MAGIC)

W28 (radio)

TeV Pulsar Wind Nebulae

- Many known X-ray PWN now identified as TeV emitters and almost all of the highest spin-down power radio pulsars have associated TeV emission
 - Efficient particle accelerators
- May be easier to detect in TeV than keV ?
 - Integration over pulsar lifetime for TeV electrons (less cooling)
 - TeV instruments sensitive to more extended objects
 - no confusion with thermal emission
 - Many of our unidentified sources may be PWN

What powers TeV PWN? Fermi Pulsars!

31 gamma-ray and radio pulsars (including 8 msPSRs)

16 gamma-ray only pulsars

Pulses at ~1/10th real rate

△ EGRET pulsars

- young pulsars discovered using radio ephemeris
- pulsars discovered in blind search
- 🛧 millisecond pulsars discovered using radio ephemeris

high-confidence detections from 1st six month Fermi operations

Blazars: Key Questions

Fermi's dominant source class, but regarding CRs...

- Emission mechanisms unclear (particularly for high energy component)
 - leptonic (IC of synchrotron or external photons)
 - hadronic ($\pi_0 \rightarrow \gamma \gamma$, proton synchrotron)
- Emission location unclear
 - Single zone for all wavebands (completely constraining for simplest leptonic models)
 - Opacity effects and energy-dependent photospheres
- Jet composition unclear
 - Poynting flux, leptonic, ions
- Jet confinement unclear
 - External pressure, magnetic stresses
- Effect of blazar emission on host galaxies and galaxy clusters

Starformation & Cosmic Rays - YES!

 M82 by

 VERITAS

 NGC253

 By HESS

 NASA, ESA, The Hubble

 Heritage Team, (STScl / AURA)

Galaxy clusters - CR calorimeter?

CR storage over cosmological time scales;
 CRs, AGN and DM annihilate

No easy pick for gamma-ray astronomy, ...still upper limits:

Outlook for the photon messenger → Fermi continues measuring the GeV sky with unprecedented quality

 \rightarrow resolve O(1000) sources, spiral arm structure, individual molecular clouds, local group galaxies, continues indirect DM searches ...

Quo vadis, European γ-ray astroparticle physics?

Completing major upgrades in current Cherenkov experiments!

MAGIC: 2nd telescope up \rightarrow stereoscopy to overcome background at E_{thres}

H.E.S.S.: Large center telescope \rightarrow increase A_{eff} + lower E_{thres}

advanced photodetectors for a next generation camera

Quo vadis, European γ-ray astroparticle physics?

- The field has matured, thus thrust towards a Cherenkov observatory
- Merger of MAGIC + HESS + large number of additional collaborators
- Currently in the process of optimising design parameters for array based on MC simulations
- Formed collaboration, elected spokesperson
- Part of the ASPERA and ESFRI roadmaps
- Aim to build a prototype by 2012

Low-energy section energy threshold of some 10 GeV

Connect to richness in lower waveband Core array: mCrab sensitivity in the 100 GeV–10 TeV domain Hi

General increase in sensitivity

Exploring the cutoff region: Galactic CR acceleration

A CTA view of the Galaxy?

HESS-like - HESS exposure - HESS sources

CTA - Flat exposure - Population

Simulation of central galactic ridge by Digel, Funk & Hinton