Dark Matter theory

DM as usual
 PAMELA, ATIC/FERMI

Alessandro Strumia Pisa Univ. & CERN

EPS HEP 2009, www.cern.ch/astrumia/DM.pdf

Testing TeV-scale dark matter

best if $SM = W^{\pm}$

best if SM = q

DM and cosmology

Thermal DM reproduces the cosmological DM abundance $\Omega_{\rm DM} h^2 \approx 0.11$ for

$$\sigma v \approx 3 \times 10^{-26} \frac{\rm cm^3}{\rm sec} \sim \frac{1}{T_0 M_{\rm Pl}} \qquad \mbox{around freeze-out, i.e. } v \sim 0.2.$$

which is typical of weak-scale particles: precise TeV DM masses are obtained assuming that DM is in *one* electro-weak multiplet with *only gauge* interactions:

Quantum numbers			nick-	DM mass	Events at LHC	$\sigma_{ m SI}$ in
$SU(2)_L$	$U(1)_Y$	Spin	name	in TeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45} \mathrm{cm}^2$
2	1/2	0	sneutrino	0.54	~ 400	0.3
2	1/2	1/2	higgsino	1.2	~ 200	0.3
3	0	0	—	2.5	~ 1	1.3
3	0	1/2	wino	2.7	~ 2	1.3
5	0	1/2	stable	9.6	0	12

(co-annihilations and Sommerfeld included)

Dark Matter at LHC?

DM above a TeV is too heavy for LHC and for δm_h^2 . DM below a TeV with weak gauge interactions annihilates too much leaving a too low Ω_{DM} , unless:

- Extra solution at $M < M_W$ such that too large $\sigma(\text{DM} \text{DM} \rightarrow W^+W^-)$ is kinematically suppressed. Not fully excluded by LEP. E.g. 'inert doublet'
- Mix interacting $(M \gg v)$ with singlets $(M \rightarrow 0)$: get any intermediate M.
- DM as singlet + extra coupling e.g. $bino_{DM}$ -lepton-slepton Yukawa in SUSY works if sleptons are around or below the LEP bound. Small extra couplings can be resonantly enhanced, e.g. DM DM $\rightarrow A \rightarrow b\overline{b}$ in SUSY if $M_A = 2M$.
- LHC can make many gluinos that decay into DM, maybe slowly (gravitino).

Direct DM detection: theory

Direct DM detection: experiment

Bounds on the Spin-Independent $\sigma_{SI}(DM nucleon)$ parameter:

DM must be neutral under the γ, g and almost neutral under the Z

The vector effect vanishes if DM is real (e.g. a 'neutralino' Majorana fermion)

Inelastic DM $N \rightarrow DM'N$ can explain DAMA and its energy spectrum for $\Delta M \sim 100$ keV: soon (already?) tested by ZEPLIN, and by LUX and XENON.

Indirect signals of Dark Matter

DN

DM

Sun

DM DM annihilations in our galaxy might give detectable γ , e^+ , \bar{p} , \bar{d} , ν .

Mark A. Garlick / space-art.co.uk

Model-independent final state spectra

Indirect signals depend on the DM mass M, non-relativistic σv , primary BR:

$$\mathsf{DM} \ \mathsf{DM} \rightarrow \begin{cases} \frac{W^+W^-, \ ZZ, \ Zh, \ hh}{e^+e^-, \ \mu^+\mu^-, \ \tau^+\tau^-} & \mathsf{Leptons}\\ b\bar{b}, \ t\bar{t}, \ q\bar{q} & \mathsf{quarks}, \ q = \{u, d, s, c\} \end{cases}$$

Energy spectra of the stable final-state particles, e, p, ν , γ for M = 1 TeV:

Warning: γ receive extra comparable contributions from 3-body and one-loop.

The galactic DM density profile

DM velocity: around the escape velocity $\beta \approx 10^{-3}$.

DM local density: $\rho_{\odot} \equiv \rho(r_{\odot} \approx 8 \text{ kpc}) \approx 0.38 \text{ GeV/cm}^3$ from rotation curves.

DM is spherically distributed but its density profile $\rho(r)$ is uncertain. Indeed DM is like capitalism according to Marx: a gravitational system has no ground state so everything is (slowly) collapsing to a point and maybe $\rho(r \rightarrow 0) = \infty$.

Sub-halos boost the DM DM signal?

N-body simulations suggest that DM might clump in subhalos:

Annihilation rate $\propto \int dV \rho^2$ increased by a boost factor $B = 1 \leftrightarrow 100 \sim$ a few Simulations neglect normal matter, that locally is comparable to DM.

PAMELA, FERMI/ATIC, HESS

\bar{p} : consistent with bck

 e^+/e^- : excess

$e^- + e^+$: feature?

The e^{\pm} excesses can be unexpected DM

PAMELA e^+ needs either leptonic DM channels or any channel if $M \gtrsim \text{TeV}$.

PAMELA \bar{p} disfavor non-leptonic channels, unless $M \gtrsim 10 \text{ TeV}$.

ATIC or FERMI want leptonic channels and $M \sim 3 \,\text{TeV}$.

 σv a few orders above the value suggested by cosmology or $\tau \sim 10^{26}$ sec.

(caveats)

σ (PAMELA + FERMI) $\gg \sigma$ (cosmo)

up to co-annihilations, resonances, sub-clumps, ..., Sommerfeld enhancement: how to extrapolate the cosmological σv at $v \sim 0.2$ down to $v \sim 10^{-3}$?

Usually bad $\sigma v \propto v^0$ (s-wave) or worse $\sigma v \propto v^2$ (p-wave). Classic analogy: the sun attracts slower bodies, enhancing its cross section: $\sigma = \pi R_{\odot}^2 (1 + v_{escape}^2/v^2)$. Quantum Sommerfeld effect: $\sigma v \propto 1/v$ if DM is charged under a lighter particle.

Present in the SM if $M \gtrsim M_W / \alpha$, but DM would annihilate into $W^+ W^-$.

Bounds on DM from γ and ν

DM DM $\rightarrow \ell^+ \ell^-$ is unavoidably accompanied by photons:

- Brehmstralung from ℓ^{\pm} (if $\ell = \tau$ also $\tau \to \pi^0 \to \gamma\gamma$). Largest $E_{\gamma} \sim M_{\text{DM}}$, probed by HESS.
- Inverse Compton: $e^{\pm}\gamma \rightarrow e^{\pm}\gamma'$ scatterings on CMB and star-light: $\dot{E} \propto u_{\gamma}$. Intermediate $E_{\gamma'} \sim E_{\gamma}(E_e/m_e)^2 \sim 10 \text{ GeV}$ probed by FERMI, that so far only released γ below 10 GeV at $10^{\circ} < |b| < 20^{\circ}$ (EGRET not confirmed).
- Synchrotron: e^{\pm} in the galactic magnetic fit: $\dot{E} \propto u_B = B^2/2$. Small $E_{\gamma} \sim 10^{-6} \,\text{eV}$, probed by radio-observations: Davies, VLT, WMAP.

γ observations

Bounds from Galactic Center observations depend on its unknown DM ρ

e^{\pm} excesses vs γ, ν bounds

Assuming NFW, conservative bounds from γ observations of the Galactic Center, Galactic Ridge, Spherical Dwarfes and from radio and ν observations exclude the green (allowed by PAMELA) and the red region (+FERMI):

e^{\pm} excesses can be DM if ρ is isothermal

The Inverse Compton bound is **robust**; today weaker but Fermi is taking data...

New DM theories

DM is charged under a dark gauge group, to get the Sommerfeld enhancement.

DM annihilates into the new vector. If light, $m \leq \text{GeV}$, it can only decay into the lighter leptons. Large $\sigma(\text{DM DM} \rightarrow \ell^+ \ell^+ \ell^- \ell^-)$ obtained.

 γ has a mixing θ with the new light vector, giving a too large elastic σ_{SI} .

If the DM gauge group is non abelian and DM has multiple components with 100 keV ($\stackrel{?}{\sim} \alpha_H m$) mass splittings, one can instead get an inelastic σ for DAMA.

Sensitivity to θ, m can be best improved by e beam-dump experiments.

... and 100 other DM models, mostly with DM \neq neutralino!

Status of DM DM $\rightarrow \ell^+ \ell^- \ell^+ \ell^-$

Smoother e^{\pm} spectrum good for FERMI γ brehmstralung reduced from $\ln M/m_{\ell}$ to $\ln m/m_{\ell}$

New Dark Matter best fit

DM with M = 3. TeV that annihilates into 4μ with $\sigma v = 8.4 \times 10^{-23}$ cm³/s

Standard Dark Matter best fit

DM with M = 3. TeV that annihilates into $\tau^+ \tau^-$ with $\sigma v = 1.9 \times 10^{-22}$ cm³/s

(Inverse Compton depends only on the e^{\pm} spectrum)

Bounds from cosmology

DM annihilation rate $\propto \rho^2$ is enhanced in the early universe: its products can

1. affect BBN at $T \sim MeV$ fragmenting ⁴He, D, ³He... Their primordial abundances are not safely known.

- 2. affect CMB reionizing H after matter/radiation decoupling, $z \leq 1000$.
- 3. heat gas after structure formation $z \sim 10$. Depends on unknown non-linear small-scale DM clustering.

1, 2 and 3 give comparable constraints at the PAMELA-level, $\sigma v \sim 10^{-23} \text{ cm}^3/\text{sec.}$ 2 is stronger and robust and can be improved by PLANCK.

PAMELA/FERMI as **DM** decays?

Not constrained by cosmology; compatible with all $\rho(r)$ because $\rho^2 \frac{\sigma v}{2M^2} \rightarrow \frac{\rho^4}{M\tau}$:

- GUT-suppressed dimension 6 operators give the needed $\tau \sim \frac{M_{GUT}^4}{M^5} \sim 10^{26} s$
- $M \sim 3 \text{ TeV}$ gives the cosmological Ω_{DM} if DM is a baryon-like asymmetry kept in thermal equilibrium by weak sphalerons down to $T_{\text{dec}} \sim 200 \text{ GeV}$.

Conclusions

The PAMELA, FERMI-ATIC, HESS e^{\pm} excesses attracted most attention. They could be due to astrophysics or to unexpected DM as follows:

- 3 TeV DM that annihilates in $\tau^+\tau^-$ if the DM density $\rho(r)$ is quasi-constant.
- 3 TeV DM that annihilates in 4μ , better if ρ_{eff} is quasi-constant.
- DM that decays mostly into μ or τ , whatever $\rho(r)$ is.
- sub-TeV DM and many other DM possibilities cannot fit the e^{\pm} excesses.

Byproduct: model-independent DM phenomenology and DM models. Next:

- DM predicts that e^+/e^- continues to grow at higher energies PAMELA up to 270 GeV finds ______ . Later AMS.
- Is an excess present in \bar{p} at higher energies? No, in the extra PAMELA09 preliminary bin. Later AMS up to 1 TeV?
- IC (and maybe FSR) must give a γ excess: FERMI on 12 August 09.

After FERMI γ data

or

Nothing in γ Nothing in \overline{p} Astrophysics in e^+ Game over?! DM in e^+ and e^- DM in γ Nothing in \overline{p} : **leptophilic DM!?**

?

'Fitting' PAMELA and FERMI

Miscellanea DM theory news

Automatically stable DM candidates: weak 5-plet, vectors of extra SU(2).

DM quasi-degenerate to a DM[±]: could form stable bound states with *heavy* enough nuclei: $E_B(DM^{\pm}B) \sim Z\alpha^2 \mu > \Delta M$.

 γ from 3-body annihilations computed in the MSSM.