Measurement of the W boson mass with 1 fb$^{-1}$ of DØ Run II data

Mikołaj Ćwiok
University of Warsaw

on behalf of the DØ Collaboration
Motivation for precise W mass

- Precise measurements of m_W and m_t can constrain SM Higgs mass

$$m_W = \sqrt{\frac{\pi \alpha}{\sqrt{2} G_F}} \cdot \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$$

$\Delta r \propto m_t^2$
$\Delta r \propto \log m_H$

- Δm_W has same impact on Δm_H for $\Delta m_W/\Delta m_t \approx 0.006$
 - for recent $\Delta m_t = 1.3$ GeV would need: $\Delta m_W = 8$ MeV (0.01%)
 - current world average: $\Delta m_W = 25$ MeV (0.03%)

- Additional contributions to Δr arise in SM extensions...

EPS 2009, Cracow, Poland

Mikolaj Cwiok, 17 July 2009
Signatures & observables

- **Signatures of W events:**
 - isolated, high p_T lepton (e or μ)
 - missing E_T

- **Use 3 kinematic variables:** (Jacobian edge)
 \[
 m_T = \sqrt{2 \, E_T^\ell \, E_T \, (1 - \cos \Delta \phi_{\ell \nu})}
 \]
 - affected by detector resolution (MET)

 \[p_T^\ell \]
 - affected by motion of W boson (p_T^W)

 \[p_T^\nu = E_T \]
 - sensitive to both effects, but is not 100% correlated with other 2 measurements

- **25 MeV precision on m_W requires:**
 - accuracy of lepton (e or μ) energy scale: $\sim 0.02\%$
 - accuracy of hadronic recoil scale: $\sim 1\%$
Analysis overview

• This analysis exploits $W \rightarrow e\nu$ channel only
 electron energy resolution $\sim 4\%$, muon momentum scale $\sim 10\%$ @ $p_T=50$ GeV

• Compare m_T, p_T^e, \not{E}_T data spectra with template spectra from MC

• Fast Monte Carlo for templates generation:
 ResBos – W and Z/γ^* boson production, decay kinematics
 perturbative NLO at high boson p_T, gluon resummation at low boson p_T
 PHOTOS – FSR radiation of ≤ 2 photons
 effect of full QED corrections assessed from WGRAD and ZGRAD

Parametric MC Simulation (PMCS) – detector efficiencies, energy response & resolution for electrons and hadronic recoil
 parametric functions and binned look-up tables based on detailed GEANT simulation
 and fine-tuned from control data samples: $Z\rightarrow ee$, Zero Bias, Minimum Bias

• Blind analysis – m_W returned by fits was deliberately shifted by some unknown offset before the final fitting
 results were unblinded after completing all consistency checks for W and Z events
Event selection

- **1 fb⁻¹ of data (Run Ila, 2002-2006)**
- **W→ev sample – 499,830 evts:**
 - Electron: |η| < 1.05, spatial track match, \(p_T^e > 25 \text{ GeV} \)
 - Missing \(E_T > 25 \text{ GeV} \)
 - Recoil \(u_T < 15 \text{ GeV} \)
 - 50 < \(m_T < 200 \text{ GeV} \)

 96% purity, main backgrounds: \(Z\rightarrow ee \), QCD multijet, \(W\rightarrow \tau v\rightarrow ev\nu\nu \)

- **Z→ee sample for calibration – 18,725 evts:**
 - calibrate EM energy scale from Z pole
 - tune fast PMCS
Electron efficiency

Fast MC models various electron selection efficiencies:

- **Electron-only**: trigger, CAL-based ID, tracking from Z data; tag & probe; parameterized using: η^e, p_T^e, z_{vtx}

- **W event topology**: spatial proximity recoil ↔ electron from Z data; parameterized using: p_T^e, u_\parallel

- **Additional hadronic energy** in CAL at high luminosity from full MC + ZB data; parameterized using: Scalar E_T, u_\parallel
Electron model

- Fit amount of **uninstrumented** material in front of the calorimeter with 0.01X₀ precision
- Use precise Z mass from LEP to calibrate absolute EM energy scale
- **Simulate measured electron energy as:**

\[
E(\text{smear}) = R_{EM}(E) \otimes \sigma_{EM}(E) + \Delta E(L, u_{||})
\]

Energy response:

- dominant source in m_{W} systematics: 34 MeV
- fitted from electron energy spread in Z → ee data

Energy resolution:

\[
\frac{\sigma_{EM}(E)}{E} = \sqrt{C_{EM}^2 + \frac{S_{EM}(E, \theta)^2}{E}}
\]

- S_{EM} depends on energy and incidence angle, from improved full GEANT simulation featuring: lower energy cut offs, updated interaction x-sections
- C_{EM} = 2.05\% ± 0.10\%; from fit to the m_{ee} distribution from Z → ee data
A candidate event of the process $W \rightarrow e\nu$ is shown in this diagram. The event is characterized by the presence of an electron, a neutrino, and a recoil in the event display. The diagram also includes regions for EM (electromagnetic), HAD (hadronic), and E_T (transverse energy) for analysis.
Hadronic recoil model

- Neutrino p_T is simulated as:
 $$\vec{E}_T = -\vec{p}_T^e - \vec{u}_T$$

- Recoil model has HARD and SOFT components:
 $$\vec{u}_T (smear) = \vec{u}_T^{HARD} + \vec{u}_T^{SOFT} + \vec{u}_T^{ELEC} + \vec{u}_T^{FSR}$$

- Model is derived from detailed GEANT simulation ($Z \rightarrow \nu\nu$) and control data samples ($Z \rightarrow ee$, Zero Bias, Minimum Bias)

- Recoil response and resolution are fine-tuned from $Z \rightarrow ee$ data:
 - require balancing of u_T and p_T^{ee}
 - mean and width of η_{imb} distribution depend on hadronic recoil response and resolution

- Scalar E_T is also modeled for electron selection efficiencies

\[\chi^2 / \text{ndf} = 3.1 / 7 \]
\[\chi^2 / \text{ndf} = 4.5 / 8 \]
W mass fits

- Templates for different m_W hypotheses at 10 MeV intervals: W signal (PMCS) + background
- Compute binned likelihood between data and template
- Fit m_W for each of 3 observables

$m_W = 80.401 \pm 0.023$ GeV (stat)

Fit range: $65 < m_T < 90$ GeV
W mass fits

Electron p_T method

\[m_W = 80.400 \pm 0.027 \text{ GeV (stat)} \]
Fit range: \(32 < p_T^e < 48 \text{ GeV} \)

Neutrino p_T method

\[m_W = 80.402 \pm 0.023 \text{ GeV (stat)} \]
Fit range: \(32 < E_T < 48 \text{ GeV} \)
Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>m_T</th>
<th>p_T(e)</th>
<th>Missing E_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron energy response</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Electron energy resolution</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Electron energy non-linearity</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Electron energy loss differences for W and Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electron efficiencies</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Recoil model</td>
<td>6</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Subtotal Experimental</td>
<td>35</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>PDF CTEQ6.1M</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>QED</td>
<td>7</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Boson p_T</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal Theory (W/Z production & decay)</td>
<td>12</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Total Systematics</td>
<td>37</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>Total Statistics</td>
<td>23</td>
<td>27</td>
<td>23</td>
</tr>
<tr>
<td>TOTAL</td>
<td>44</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>
Combined result

• Correlation matrix:

<table>
<thead>
<tr>
<th></th>
<th>m_T</th>
<th>$p_T(e)$</th>
<th>MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_T</td>
<td>1</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>$p_T(e)$</td>
<td>1</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>MET</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Statistics, Electron response, Recoil model, PDF
Other sources: 100% correlated

• DØ Run IIa combination:

$$m_W = 80.401 \pm 0.021 \text{ (stat)}$$
$$\pm 0.038 \text{ (syst) GeV}$$
$$\Delta m_W \text{ (total)} = 0.043 \text{ GeV}$$
Summary & Outlooks

- **Single most precise measurement of** m_W **to date:**

 $$m_W = 80.401 \pm 0.021_{\text{stat}} \pm 0.038_{\text{syst}} \text{ GeV} = 80.401 \pm 0.043 \text{ GeV}$$

 - In good agreement with previous measurements: CDF Run II (0.2 fb$^{-1}$), LEP2 average

- **This DØ analysis exploits 1/6th of the available dataset**

 - Both CDF & DØ are working on larger datasets
 - Total uncertainty of 25 MeV expected at: 2.3 fb$^{-1}$(CDF) and 5 fb$^{-1}$(DØ)

- **Prospects:**

 - Different techniques used by CDF & DØ for lepton energy scale are good for combination and cross checks
 - CDF/DØ/LEP2 combination and W width analysis are currently under Editorial Board review
 - Better constrained PDFs in the future will reduce correlated uncertainties between CDF & DØ
BACKUP
Slides
Tevatron at Fermilab

- Proton-antiproton @ $\sqrt{s}=1.96$ TeV every 396 ns, 36x36 bunches
- Peak luminosity: $3.6 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$
- Recorded: $\sim 6 \text{fb}^{-1}$ / experiment

- By end of 2010: 9fb^{-1} / experiment
- Running in 2011 is considered
DØ detector

- **Tracker:**
 - silicon microstrips + scintillating fibers
 - covers $|\eta| < 2.5$ inside 2T superconducting solenoid

- **Calorimeter:**
 - sampling U/LAr
 - hermetic coverage: $|\eta| < 4.2$

- **Muon system:**
 - wire chambers + scintillators
 - covers $|\eta| < 2$ before and after 1.8T toroid
DØ LAr calorimeter

- Active medium: Liquid argon
- Absorber: Uranium (mostly)
- 3 cryostats: Central CAL (CC) and two End CALs (EC)
- Hermetic with full coverage: $|\eta| < 4.2$
- In Run II there is more uninstrumented material in front of the CAL than in Run I

- 46,000 cells
- Segmentation (towers): $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ (0.05 x 0.05 in third EM layer, near shower maximum)
Backgrounds

- **Purity of W sample**: 96%
- **Backgrounds**:
 - $Z \rightarrow ee$: 0.80% (Data)
 - QCD multijet: 1.49% (Data)
 - $W \rightarrow \tau \nu \rightarrow e\nu\nu\nu$: 1.60% (GEANT)
- For 3 observables: estimated backgrounds are added to the simulated signal from W (PMCS)
W production & decay models

Generators for W and Z processes at hadron colliders:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Process</th>
<th>QCD</th>
<th>EW</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESBOS</td>
<td>W, Z</td>
<td>NLO</td>
<td>-</td>
</tr>
<tr>
<td>WGRAD</td>
<td>W</td>
<td>LO</td>
<td>complete $O(\alpha)$, Matrix Element, ≤ 1 photon</td>
</tr>
<tr>
<td>ZGRAD</td>
<td>Z</td>
<td>LO</td>
<td>complete $O(\alpha)$, Matrix Element, ≤ 1 photon</td>
</tr>
<tr>
<td>PHOTOS</td>
<td></td>
<td></td>
<td>QED FSR, ≤ 2 photons</td>
</tr>
</tbody>
</table>

- **ResBos+Photos** as main generator
 - reasonable $p_T^{W,Z}$ spectra
 - leading EWK effects (1^{st} and 2^{nd} FSR photon)

- **W/ZGRAD** for estimating effects of full EWK corrections

 Baur, Wackeroth; Phys. Rev D70, 073015

- Final QED m_W uncertainties are 7,7,9 GeV for m_T, p_T^e, E_T
 - comparison of “FSR only” and “full EWK” from W/ZGRAD
 - comparison of “FSR only” W/ZGRAD and Photos

Balazs, Yuan; Phys Rev D56, 5558
Barbiero, Was; Comp Phys Com 79, 291
Hadronic recoil - details

HARD COMPONENT:
- hard component balancing q_T of the vector boson
- from $Z\rightarrow nn$ full MC
- fine-tuned from $Z\rightarrow ee$ data

SOFT COMPONENT:
- energy not correlated with the vector boson (additional interactions in same BX, spectator partons, detector noise)
- uses ZB & MB event libraries
- fine-tuned from $Z\rightarrow ee$ data

\[
\begin{align*}
\vec{u}_{T,\text{HARD}} &= f(\vec{q}_T) \\
\vec{u}_{T,\text{SOFT}} &= -\sqrt{\alpha_{MB}} \cdot \vec{E}_{T,\text{MB}} - \vec{E}_{T,\text{ZB}} \\
\vec{u}_{T,\text{ELEC}} &= -\sum_e \Delta u_{\parallel} \cdot \hat{p}_{T,e} \\
\vec{u}_{T,\text{FSR}} &= \sum_{\gamma} \vec{p}_{T,\gamma}
\end{align*}
\]

- correction for energy leakage outside electron cones
- from W data (azimuthally separated window)
- FSR photons far away from electron(s) are reconstructed as recoil energy
Consistency checks

• **Vary fitting ranges** for all 3 observables

 ![Graph showing consistency checks](image)

 e.g. upper m_T limit
 (yellow = stat. uncert.)

• **Split W & Z data samples into statistically independent categories** or **vary the cuts** and compare relative change in m_Z/m_W ratio:

 – Different electron η ranges
 – Different EM calorimeter ϕ fiducial cuts
 – High and low instantaneous luminosity
 – Different data taking periods
 – High and low scalar E_T
 – Different recoil u_T cuts
 – Negative and positive u_\parallel

Result is stable within one standard deviation!
MC closure test

Test analysis methodology with Full GEANT MC treated as the collider data

Good agreement between Full MC and Fast MC (PMCS)

Fitted W mass and width agree with input values
W Boson Mass with 1 fb$^{-1}$ of D0 Run II Data

EPS 2009, Cracow, Poland

M$_{W}$ & Γ_{W} – today and future

W-Boson Mass [GeV]

Direct
- **TEVATRON**
 - 80.432 ± 0.039
- **LEP2**
 - 80.376 ± 0.033
- **Average**
 - 80.399 ± 0.025
 - χ^2/DoF: 1.2 / 1

Indirect
- **NuTeV**
 - 80.136 ± 0.084
- **LEP1/SLD**
 - 80.363 ± 0.032
- **LEP1/SLD/m$_{t}$**
 - 80.364 ± 0.020

W-Boson Width [GeV]

Direct
- **TEVATRON**
 - 2.050 ± 0.058
- **LEP2**
 - 2.196 ± 0.083
- **Average**
 - 2.098 ± 0.048
 - χ^2/DoF: 2.1 / 1

Indirect
- **pp indirect**
 - 2.141 ± 0.057
- **LEP1/SLD**
 - 2.091 ± 0.003
- **LEP1/SLD/m$_{t}$**
 - 2.091 ± 0.002

LEP EW WG
March 2009

DIS 2009
S. Heinemeyer