The 2009 Europhysics Conference on High Energy Physics, Cracow, Poland July 16-22, 2009

Measurement of the W boson mass with 1 fb⁻¹ of DØ Run II data

Mikołaj Ćwiok

University of Warsaw

on behalf of the DØ Collaboration

University of Warsaw

Motivation for precise W mass

March 2009

- for recent $\Delta m_t = 1.3 \text{ GeV}$ would need: $\Delta m_W = 8 \text{ MeV}$ (0.01%)
- current world average:
- $\Delta m_W = 25 \text{ MeV} (0.03\%)$
- Additional contributions to $\Delta \mathbf{r}$ arise in SM extensions...

Signatures & observables

- **Signatures of W events:**
 - isolated, high p_T lepton (e or μ)
 - missing E_{T}
- **Use 3 kinematic variables:** (Jacobian edge)

$$\mathbf{m}_{\mathbf{T}} = \sqrt{2 E_T^{\ell} \not\!\!\!E_T (1 - \cos \Delta \phi_{\ell \nu})}$$

affected by detector resolution (MET)

$$\mathbf{p}_{\mathbf{T}}^{\ell}$$

affected by motion of W boson (p_{T}^{W})

 $\mathbf{p}_{\mathbf{T}}^{\nu} = \mathbb{E}_{T}$

- sensitive to both effects, but is not 100% correlated with other 2 measurements
- **25 MeV precision on m_w requires :**
 - accuracy of lepton (e or μ) energy scale: ~0.02%
 - accuracy of hadronic recoil scale: ~1%

Analysis overview

- This analysis exploits W→ev channel only electron energy resolution ~4%, muon momentum scale ~10% @ p_T=50 GeV

Fast Monte Carlo for templates generation: ResBos – W and Z/ γ^* boson production, decay kinematics perturbative NLO at high boson p_T , gluon resummation at low boson p_T PHOTOS – FSR radiation of ≤ 2 photons effect of full QED corrections assessed from WGRAD and ZGRAD Parametric MC Simulation (PMCS) – detector efficiencies, energy response & resolution for electrons and hadronic recoil parametric functions and binned look-up tables based on detailed GEANT simulation and fine-tuned from control data samples: Z→ee, Zero Bias, Minimum Bias

 Blind analysis – m_w returned by fits was deliberately shifted by some unknown offset before the final fitting

results were unblinded after completing all consistency checks for W and Z events

Event selection

- 1 fb⁻¹ of data (Run IIa, 2002-2006)
- **W**→**e**ν sample **499,830** evts:
 - Electron: $|\eta| < 1.05$, spatial track match, $p_T^e > 25 \text{ GeV}$
 - Missing E_T > 25 GeV
 - Recoil u_T < 15 GeV
 - $-50 < m_T < 200 \text{ GeV}$

96% purity, main backgrounds: Z \rightarrow ee, QCD multijet, W $\rightarrow \tau v \rightarrow e v v v$

- $Z \rightarrow ee$ sample for calibration 18,725 evts:
 - calibrate EM energy scale from Z pole
 - tune fast PMCS

Electron efficiency

Fast MC models various electron selection efficiencies:

- Electron-only: trigger, CAL-based ID, tracking from Z data; tag & probe; parameterized using: η^e, p_T^e, z_{vtx}
- W event topology: spatial proximity recoil ↔ electron from Z data; parameterized using: p_T^e, u_{||}
- Additional hadronic energy in CAL at high luminosity
 from full MC + ZB data; parameterized using: Scalar E_τ, u_μ

Electron model

- Fit amount of uninstrumented material in front of the calorimeter with 0.01X₀ precision
- Use precise Z mass from LEP to calibrate absolute EM energy scale
- Simulate measured electron energy as:

$$E(smear) = R_{EM}(E) \otimes \sigma_{EM}(E) + \Delta E(\mathcal{L}, u_{\parallel})$$

Energy response: $R_{EM}(E) = \alpha \cdot E + \beta$

- dominant source in m_w systematics: 34 MeV
- fitted from electron energy spread in $Z \rightarrow ee$ data

Energy resolution:
$$\frac{\sigma_{EM}(E)}{E} = \sqrt{C_{EM}^2 + \frac{S_{EM}(E,\theta)^2}{E}}$$

- S_{EM} depends on energy and incidence angle, from improved full GEANT simulation featuring: lower energy × cut offs, updated interaction x-sections
- C_{EM} = 2.05% ± 0.10%; from fit to the m_{ee} distribution from Z→ee data

Mikolaj Cwiok, 17 July 2009

8

Hadronic recoil model

- Neutrino p_{τ} is simulated as:
- **Recoil model has HARD and SOFT components:**

 $\vec{u}_T(smear) = \vec{u}_T^{\text{HARD}} + \vec{u}_T^{\text{SOFT}} + \vec{u}_T^{\text{ELEC}} + \vec{u}_T^{\text{FSR}}$

- Model is derived from detailed GEANT simulation $(Z \rightarrow vv)$ and control data **samples** ($Z \rightarrow ee$, Zero Bias, Minimum Bias)
- **Recoil response and resolution are** fine-tuned from $Z \rightarrow ee$ data:
 - require balancing of u_{T} and p_{T} (ee)
 - mean and width of η_{imb} distribution depend on hadronic recoil response and resolution
- Scalar E_{T} is also modeled for electron selection efficiencies

W Boson Mass with 1 fb⁻¹ of D0 Run II Data EPS 2009, Cracow, Poland

width

W mass fits

- Templates for different m_W hypotheses at 10 MeV intervals: W signal (PMCS) + background
- Compute binned likelihood between data and template
- Fit m_w for each of 3 observables

Fit range: $65 < m_T < 90 \text{ GeV}$

Uncertainties

sing E _T
34
3
7
4
5
20
4
41
11
9
2
17
44
23
50

THEORY

12

Combined result

• Correlation matrix:

	m _T	p _T (e)	MET
m _T	1	0.83	0.82
р _т (е)		1	0.68
MET			1

Statistics, Electron response, Recoil model, PDF Other sources: 100% correlated

• DØ Run IIa combination:

m_W = 80.401 ± 0.021 (stat) ± 0.038 (syst) GeV ∆m_W (total) = 0.043 GeV

Summary & Outlooks

• Single most precise measurement of m_w to date:

 $m_W = 80.401 \pm 0.021_{stat} \pm 0.038_{syst} \text{ GeV} = 80.401 \pm 0.043 \text{ GeV}$

- In good agreement with previous measurements: CDF Run II (0.2 fb⁻¹), LEP2 average
- This DØ analysis exploits 1/6th of the available dataset
 - Both CDF & DØ are working on larger datasets
 - Total uncertainty of 25 MeV expected at: 2.3 fb⁻¹(CDF) and 5 fb⁻¹(DØ)

• Prospects:

- Different techniques used by CDF & DØ for lepton energy scale are good for combination and cross checks
- CDF/DØ/LEP2 combination and W width analysis are currently under Editoral Board review
- Better constrained PDFs in the future will reduce correlated uncertainties between CDF & DØ

BACKUP Slides

Mikolaj Cwiok, 17 July 2009

W Boson Mass with 1 fb⁻¹ of D0 Run II Data EPS 2009, Cracow, Poland

8.0

7.5

7.0

6.5

6.0

5.5

5.0

3.5 3.0

2.5 2.0

1.5 1.0

0.5

(**,4**.0 4.0 4.0 3.5

Tevatron at Fermilab

- Proton-anitproton @ √s=1.96 TeV every 396 ns, 36x36 bunches
- Peak luminosity: 3.6 10³² cm⁻²s⁻¹
- Recorded: ~6 fb⁻¹ / experiment

April 2002 – June 2009

- Delivered

— Recorded

19 April 2002 - 14 June 2009

6.9 fb⁻¹

Run II Integrated Luminosity

This analysis

Dec-04

Apr-05 Aug-05 Dec-05

- By end of 2010: 9 fb⁻¹ / experiment
- Running in 2011 is considered

DØ detector

- Tracker:
 - silicon microstrips + scintillating fibers
 - covers |η| < 2.5 inside 2T superconducting solenoid

Calorimeter:

- sampling U/LAr
- hermetic coverage: $|\eta| < 4.2$

Muon system:

- wire chambers + scintillators
- covers |η| < 2 before and after
 1.8T toroid

DØ LAr calorimter

- 46,000 cells
- Segmentation (towers): $\Delta \eta x \Delta \phi = 0.1 x 0.1$ (0.05 x 0.05 in third EM layer, near shower maximum)

- Active medium: Liquid argon
- Absorber: Uranium (mostly)
- 3 cryostats: Central CAL (CC) and two End CALs (EC)
- Hermetic with full coverage: $|\eta| < 4.2$
- In Run II there is more uninstrumented material in front of the CAL than in Run I

Mikolaj Cwiok, 17 July 2009

Backgrounds

- Purity of W sample : 96%
- Backgrounds:
 - **Z**→**ee** : 0.80% (Data)
 - QCD multijet : 1.49% (Data)
 - $W \rightarrow \tau v \rightarrow evvv$: 1.60% (GEANT)
 - For 3 observables: estimated backgrounds are added to the simulated signal from W (PMCS)

19

W production & decay models

• Generators for W and Z processes at hadron colliders:

Tool	Process	QCD	EW	p q W^+ e^+
RESBOS	W,Z	NLO	-	Zvín
WGRAD	W	LO	complete $\mathcal{O}(\alpha)$, Matrix Element, ≤ 1 photon	\overline{p}
ZGRAD	Z	LO	complete $\mathcal{O}(\alpha)$, Matrix Element, ≤ 1 photon	
PHOTOS			QED FSR, ≤ 2 photons	

- **ResBos+Photos** as main generator
 - reasonable $p_T^{w,z}$ spectra
 - leading EWK effects (1st and 2nd FSR photon)
- Balazs, Yuan; Phys Rev D56, 5558 Barbiero, Was; Comp Phys Com 79, 291
- W/ZGRAD for estimating effects of full EWK corrections

Baur, Wackeroth; Phys. Rev D70, 073015

- Final QED m_W uncertainties are 7,7,9 GeV for m_T, p_T^e, E_T
 - comparison of "FSR only" and "full EWK" from W/ZGRAD
 - comparison of "FSR only" W/ZGRAD and Photos

Hadronic recoil - details

HARD COMPONENT:

- hard component balancing q_T of the vector boson
- from Z->nn full MC
- fine-tuned from $Z \rightarrow ee$ data

$$\vec{u}_T^{\text{HARD}} = \vec{f}(\vec{q}_T)$$

$$\vec{u}_T^{\text{SOFT}} = -\sqrt{\alpha_{MB}} \cdot \vec{E}_T^{\text{MB}} - \vec{E}_T^{\text{ZB}}$$

$$\vec{u}_T^{\text{ELEC}} = -\sum_e \Delta u_{\parallel} \cdot \hat{p}_T^e$$

$$\vec{u}_T^{\text{FSR}} = \sum \vec{p}_T^{\gamma}$$

 correction for energy leakage outside electron cones

noise)

SOFT COMPONENT:

energy not correlated with the

spectator partons, detector

uses ZB & MB event libraries

• fine-tuned from $Z \rightarrow ee$ data

vector boson (additional interactions in same BX,

- from W data (azimuthally separated window)
- FSR photons far away from electron(s) are reconstructed as recoil energy

Consistency checks

• Vary fitting ranges for all 3 observables

- Split W & Z data samples into statistically independent categories or vary the cuts and compare relative change in m_Z/m_W ratio:
 - Different electron η ranges
 - Different EM calorimeter ϕ fiducial cuts
 - High and low instantaneous luminosity
 - Different data taking periods
 - High and low scalar E_T
 - Different recoil u_T cuts
 - Negative and positive u_{II}

Result is stable within one standard deviation !

MC closure test

Test analysis methodology with Full GEANT MC treated as the collider data

Good agreement between Full MC and Fast MC (PMCS)

Fitted W mass and width agree with input values

$M_W \& \Gamma_W - today$ and future

W-Boson Mass [GeV]

