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2Summary

• In standard perturbation theory, amplitudes at each order in α (and   ) are 
essentially unique and obey symmetries like Lorentz invariance.

• Bound state poles appear where the expansion diverges                        
⇒ the situation for relativistic bound states remains murky

• I shall discuss how to derive from            a “Born approximation” for 
mesons, which is valid at lowest order in      (no loops). 

• The quarks will be bound by the instantaneous A0 potential fixed by the 
QCD equations of motion (EOM).

• A linear A0 potential emerges (rather trivially) as a homogeneous (non-
perturbative) solution of the EOM.

• The correctness of the procedure (at lowest order in    and α) is supported 
by a highly non-trivial Lorentz covariance for the bound states, defined at 
equal time in all frames.

!

!

!

LQCD
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3Opportunities

The availability of “Born term” relativistic wave functions derived from the 
Lagrangian can teach us about hadron structure:

• The relation between the CM and Infinite Momentum frame (Light-
Front) wave functions.

• High momentum components in the bound states (related to end-point 
behaviour of distribution amplitudes and Regge behaviour).

• Chiral symmetry issues

• This approach aims at an understanding of the basis of the 
phenomenologically successful Quark Model
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4Outline of Talk

• Recall some properties of the Dirac equation (external A0 field)

• Introduce “retarded” boundary condition – OK at

• Fix A0  from operator equation of motion (for each       Fock state) 

• Allow homogeneous solution: linear potential A0 = c ⋅ r

• Fix direction of c by stationarity of action (for each Fock state)

• Calculate to O(g) , ignore O(g2)  (hence use purely linear potential)

• Impose stationarity on equal time        bound state

• Find meson wave functions with interesting phenomenology

• Observe non-trivial Lorentz covariance for a linear potential

O
(
!0

)

qq̄

qq̄
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5Electron scattering in a Coulomb potential

Instantaneous potential A0(k) does not 
change the energy E of the electron

= S + S K G

At a bound state pole: 

the time development. This allows to understand why the D-equation appears like a one-
body equation, even though it describes many pairs in the standard Dirac vacuum.

In standard perturbative evaluations of the path integral one assumes the asymptotic
states to be the free vacuum and the functionals V in (??) are indirectly specified through
the choice of a Feynman iε prescription for the propagators. Here the more explicit treat-
ment helps to identify the choices of fermion vacuum and the solution of the classical A0

field as a function of the positions of the sources, including a crucial possibility of allowing
a homogeneous component.

2. Time development

2.1 Electron scattering in a time-independent potential

There is no ∂0A0 term in gauge theory lagrangians (unless such a term is introduced
through the gauge fixing). Thus A0 is instantaneous, i.e., in Coulomb gauge and at lowest
order in ! (no loops) A0 may be treated as a classical field which is constrained at each
instant of time by the distribution of charges. This feature is fully relativistic and we shall
consider the bound states formed by the instantaneous potential.

The time development of relativistic particles is complicated by their backward (in
time) motion. We shall illustrate our method for dealing with this by the binding of
an electron in an external, time-independent Coulomb field A0(x). At O

(
e2

)
the Green

function for scattering from an initial momentum pi to a final momentum pf = pi +k1 +k2

shown in Fig. X is

G(2)(pi, pf ) = i
/pf

+ m

p2
f −m2 + iε

∫
d3k2

(2π)3
(−ie)γ0A0(k2) i

/pf
− /k2 + m

(pf − k2)2 −m2 + iε

×
∫

d3k1

(2π)3
(−ie)γ0A0(k1) i

/pi
+ m

p2
i −m2 + iε

(2.1)

Since the static Coulomb field does not change the energy of the electron we have pi =
pf = E. The Green function G summed to all orders in the coupling satisfies the Dyson-
Schwinger equation

G = S + SKG (2.2)

where S is the electron propagator and K the Coulomb interaction. A bound state at
energy E = ER corresponds to a pole

G(E, q) =
R(ER, q)
E − ER

(2.3)

where we took pi = (E,0) and pf = (E, q). The residue must then satisfy R = SKR, i.e.,

R(ER, q) =
i

/pf
−m + iε

∫
d3k

(2π)3
(−ie)γ0A0(k) R(ER, q − k) (2.4)

Multiplying by /pf
−m and Fourier transforming to (E,x)-space we get the Dirac equation,
[
− i∇ · γ + eγ0A0(x) + m

]
R(ER,x) = ERγ0 R(ER,x) (2.5)
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R = S K R
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Fourier transforming:

Dirac 
equation

What is the equal-time Fock state composition of R ?

+ + + ...
G(E,q) =

+

E,qE,0

q k1 k2
S

K KS S
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6

k1 k2 k1 k2

k1k2

= +

t2t1

t1

t2E E E E E
E

E

Time ordering the scattering events

At fixed t1 < t2, the intermediate energy
can be negative: Pair production
The Dirac wave function contains an infinite number of e+e– pairs

E1 > 0 E1 < 0

Good news: Such a multiparticle system can be described by 
                    the “one-particle” Dirac wave function R(ER, x) 

But then: What exactly does R(ER, x) describe?

E1 = ±
√

k2
1 + m2

e
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7The retarded boundary condition

The Coulomb scattering at fixed p0 > 0 is insensitive to the
Feynman iε prescription at the negative energy pole,

SF (p) = i
/p + m

(p0 −
√

p2 + m2 + iε)(p0 +
√

p2 + m2−iε)

Hence the bound state poles would appear at the same energies using the
retarded propagators

p0 = −
√

p2 + m2

SR(p) = i
/p + m

(p0 −
√

p2 + m2 + iε)(p0 +
√

p2 + m2+iε)

Now the time ordering is trivial: There is only forward propagation in time
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8The retarded boundary condition (II)

k1 k2 k1 k2=

t2t1E E E EE

Ei > 0
Ei < 0

Using SR:

Thus R(ER, x) is the wave function of the single electron Fock state
defined through the retarded boundary condition.

This is very different from the physical, Feynman Fock state distribution

... but the positions of the bound state poles are 
    unaffected by the choice of boundary condition.

Preventing the electron from moving backwards also gives it a smooth
time development:

This is expressed by the identity based on a completeness sum,

SF (t = 0+,x) = 〈0|ψ(0+,x)ψ̄(0,0)|0〉 =
∑

X

〈0|ψ(0,x)|X, t〉〈X, t|ψ̄(0,0)|0〉

=
∫

d3p

(2π)3
1

2Ep

∑

λ

〈0|ψ(0,x) b†p,λ|0, t〉〈0, t|bp,λ ψ̄(0,0)|0〉

=
∫

d3y〈0|ψ(0,x)ψ̄(t,y)|0〉 γ0 〈0|ψ(t,y)ψ̄(0,0)|0〉

=
∫

d3y γ0S†
F (t,y − x)SF (t,y) (2.10)

These properties of Feynman propagation make it a challenging task to follow the incre-
mental time development of a relativistic particle, and hence to unravel the Fock state
structure of a Dirac bound state.

As we observed above the bound state energies E = ER of the electron in a static
Coulomb potential could (at order !0) be calculated equally well using Feynman or retarded
propagators. Since the retarded propagator (2.15) involves only forward motion (t ≥ 0 in
(2.8)) its time development may readily be studied. In particular, the retarded propagator
is local in x as t → 0,

SR(t = 0+,x) = γ0δ3(x) (2.11)

We may thus calculate the electron scattering and bound states in a static Coulomb po-
tential using retarded propagators and yet recover the correct bound state energies. The
corresponding single particle wave functions are also readily obtained as the standard so-
lutions of the Dirac equation. They have both positive and negative energy components
which move forward in time and are thus not simply related to the true wave functions
describing states with many particle pairs that are obtained with Feynman boundary con-
ditions.

2.2 Fermion propagator

The propagation of relativistic particles is characterized by the contribution of Z-graphs (cf.
Fig. 1b) describing particle production in a time-ordered dynamics. This causes non-local
propagation in time even for the free propagator. The fermion propagator,

SF (x) = 〈0|T [ψ(x)ψ̄(0)]|0〉 = i

∫
d4p

(2π)4
/p + m

(p0 − Ep + iε)(p0 + Ep − iε)
e−ip·x (2.12)

is discontinuous at x0 = 0 and allows propagation over a finite distance in vanishing time,

SF (x0 = 0±,x) = ±1
2
γ0δ3(x) + (i∇ · γ + m)

∫
d3p

(2π)3
eip·x

2Ep
(2.13)

which appears to preclude a possibility to follow the incremental time development of a
relativistic particle.

The non-locality of the second term in (2.13) may be understood as a consequence
of completeness: The propagator is given by the sum over a complete set of contributing

– 5 –

The rhs. would be 
non-local in x for SF(t=0,x)
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9Field theoretical formulation

which is local in x.
In the operator formalism the “retarded vacuum” state |0〉R is expressed in terms of

the standard Dirac vacuum |0〉 as

|0〉R = N−1
∏

p,λ

d†
p,λ|0〉 (2.24)

with the (infinite) normalization factor N fixed by R〈0|0〉R = 1. The retarded vacuum
satisfies

bp,λ|0〉R = d†
p,λ|0〉R = 0 and hence ψ(x)|0〉R = 0 (2.25)

where ψ(x) is the free (interaction picture) fermion field. Consequently the retarded prop-
agator (2.15) is given by the standard operator matrix element in the retarded vacuum,

SR(x − y) = R〈0| T [ψ(x)ψ̄(y)] |0〉R (2.26)

The negative energy contribution to the propagator in (2.15) arises from the d†d term,
which represents the removal of a positive energy antifermion from |0〉R.

3. Bound state equations in QED

3.1 The Dirac equation

Recognizing that stable fermion bound states in an external potential may (at lowest order
in !) be evaluated in the retarded vacuum (2.24) we may define the Bethe-Salpeter wave
function φ(t,x) (a c-numbered Dirac spinor) as

φ(t,x) = R〈0|ψ(t,x)|E, t〉 (3.1)

where ψ(t,x) is the Dirac field in the interaction picture,

ψ(x) =
∫

d3p

(2π)3 2Ep

∑

λ

[
u(p, λ)e−ip·xbp,λ + v(p, λ)eip·xd†

p,λ

]
(3.2)

The bound state at t = 0 is parametrized in terms of its Dirac wave function ϕ(x) as

|E, t = 0〉 =
∫

d3xψ†(t = 0,x)ϕ(x)|0〉R

=
∫

d3p

(2π)3 2Ep

∑

λ

[
u†(p, λ)ϕ(p)b†p,λ|0〉R + v†(−p, λ)ϕ(p)d−p,λ|0〉R

]
(3.3)

Hence the negative energy components of ϕ(p) describe a state where d−p,λ has removed
a positive energy antifermion from |0〉R. Using the canonical anticommutation relation

{
ψ(t, x), ψ†(t, x′)

}
= δ3(x − x′) (3.4)

we find φ(0,x) = ϕ(x). The time dependence of |E, t〉 is given by the interaction Hamil-
tonian

HI(t) = e

∫
d3x A0(x) ψ†(t,x)ψ(t,x) (3.5)
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Retarded propagator:
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is the “retarded vacuum”, for which

ψ(x)|0〉R =
∫ ∑

λ

[
u(p,λ)e−ip·xbp,λ + v(p,λ)eip·xd†

p,λ

]
|0〉R = 0

Hence in the Interaction Picture:

HI(t)|0〉R = e

∫
d3x A0(x)ψ†(t,x)ψ(t,x)|0〉R= 0

No particle production in the retarded vacuum.

The retarded propagator is not allowed in loop integrals!
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10Rederivation of the Dirac equation

which is local in x.
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The B-S amplitude:
for a stationary
 state= ϕ(x) exp(−iEt)where we take the external field to be coulombic.

The stationarity requirement for a bound state at t = 0 is

i
dφ(0,x)

dt
= R〈0|i

dψ(0,x)
dt

|E, 0〉+ R〈0|ψ(t,x)HI |E, t〉 = Eφ(0,x) (3.6)

The interaction picture fields satisfy

i
dψ(t,x)

dt
= γ0(−i∇ · γ + m)ψ(t,x) (3.7)

while making use of R〈0|ψ†(t,x) = 0 we readily find

R〈0|ψ(0,x)HI |E, 0〉 = eA0(x)ϕ(x) (3.8)

Using these relations in (3.6) gives the Dirac equation for the wave function ϕ(x) of a
bound state of energy E in the external potential A0(x),

(−i∇ · γ + eγ0A0(x) + m)ϕ(x) = Eγ0ϕ(x) (3.9)

3.2 The fermion-antifermion bound state

In this section we consider a fermion-antifermion state bound by the instantaneous QED
potential A0(x). We first illustrate our method by deriving the standard non-relativistic
Schrödinger equation for muonium. This shows how, in contrast to the case of a fixed
external potential, A0(x) is constrained by the equation of motion separately for each Fock
state component. We then note that the homogenous equation of motion ∇2A0(x) = 0
trivially allows also a linearly term, A0(x) = c ·x where c is fixed by the stationarity of the
action −1

4

∫
d4x FµνFµν , which minimizes the field energy and gives rise to a rotationally

invariant linear potential.
The derivation uses as boundary condition the retarded vacuum (2.24), which as dis-

cussed above is valid at O
(
!0

)
(no loops) for stable bound states. In the non-relativistic

limit transverse photons (A = 0) do not contribute at leading order. The case of relativistic
motion will be considered in the next section.

For simplicity of presentation we consider the fermions to be distinct, labelled “e” and
“µ”, respectively. The state at t = 0 is parametrized in analogy to (3.3) as

|E, t = 0〉 =
∫

dy1dy2 ψ†
e(t = 0,y1)χ(y1,y2)ψµ(t = 0,y2)|0〉R (3.10)

where the wave function χ(y1,y2) is a 4 × 4 matrix in Dirac space. For a natural non-
relativistic reduction to an e−µ+ state we define the (properly normalized) retarded vacuum
corresponding to (2.24) as

|0〉R = N−1
∏

p,λ

d†
e b†µ|0〉 (3.11)

implying
ψe(t,y)|0〉R = ψ†

µ(t,y)|0〉R = 0 (3.12)
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11Application to QED (Abelian) and QCD bound states

Claim: There is a limit in which the dynamics is analogous
to the external field case (Dirac equation), and to which
perturbative corrections may then be applied.

!→ 0 : No loops (which would be sensitive to the iε prescription)
  Gauge fields Aµ are fixed by stationarity of the action

α =
g2

4π
→ 0 : Photon/gluon exchanges treated perturbatively

The principle of minimal action allows a linear potential A0 = c ⋅ r .
c = 0 in QED,  c ≠ 0 in QCD amounts to a choice of boundary conditions.
The procedure to be described is correct to O(g) .

A non-trivial Lorentz covariance of the equal-time bound states
lends support for the correctness of the approximation at the given order.
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12QED example: e–µ+

⇒
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The equal-time Bethe-Salpeter wave function (with explicit Dirac indices for clarity)
should have a stationary time dependence,

φαβ(t;x1,x2) = R〈0|ψ†
µβ(t,x2)ψeα(t,x1)|E, t〉 = e−iEtφαβ(t = 0;x1,x2) (3.13)

where φαβ(t = 0;x1,x2) = χαβ(x1,x2) follows from the anticommutation relation (3.4)
and (3.12).

Matrix elements of the operator equation of motion for the photon field Aν

∂µFµν(x) − e
∑

i=e,µ

ψ̄i(x)γνψi(x) = 0 (EOM) (3.14)

constrain the instantaneous A0 field and allow to judge the accuracy of our bound state
approximation. The relevant matrix element for the BS amplitude (3.13) at t = 0 is

R〈0|ψ†
µβ(0,x2)ψeα(0,x1) (EOM) |E, 0〉 = 0 (3.15)

Since the states do not contain physical (transverse) photons only the classical (instanta-
neous) A0 field survives in Fµν(x) at lowest order in the coupling e. For ν = 0 in (3.14)
the constraint (3.15) is

χαβ(x1,x2)
[
−∇2A0(x)

]
= e

∑

i=e,µ

R〈0|ψ†
µβ(0,x2)ψeα(0,x1) ψ†

i (0,x)ψi(0,x) |E, 0〉

= e
[
δ3(x − x1) − δ3(x − x2)

]
χαβ(x1,x2) (3.16)

where we used

ψe(0,x)†ψe(0,x)|E, 0〉 = ψ†
e(0,x)

∫
d3y2χ(x,y2)ψµ(0,y2)|0〉R (3.17)

The standard solution is

A0(x) =
e

4π

(
1

|x − x1| −
1

|x − x2|

)
(3.18)

The interpretation of this result differs from the case where A0(x) is regarded as a fixed
external field, which is sampled by the charged particles according to their positions x1 and
x2. Now there is no external field but rather a bound state (3.10) which is a superposition
of Fock states. The gauge field A0(x) is constrained for each Fock component and each
instant of time by the QED equation of motion. If we would measure A0(x) far away from
the muonium atom we would need to average over all Fock states and find that the its
monopole (1/r) component vanishes (or more generally, is proportional to the sum of the
constituent charges). On the other hand, if the probe were so close to the constituents that
it weights the various Fock states differently it would detect the individual Fock components
(3.18) of the potential.

With ν = j (= 1, 2, 3) in (3.15) even the A0 field does not contribute (∂0 A0 = 0) and
thus

e δ3(x − x1)(γ0γjχ)αβ − e δ3(x − x2)(χγ0γj)αβ = 0 (3.19)
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Bound state:

Retarded vacuum:
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∫
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The standard solution is
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1
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1

|x − x2|

)
(3.18)

The interpretation of this result differs from the case where A0(x) is regarded as a fixed
external field, which is sampled by the charged particles according to their positions x1 and
x2. Now there is no external field but rather a bound state (3.10) which is a superposition
of Fock states. The gauge field A0(x) is constrained for each Fock component and each
instant of time by the QED equation of motion. If we would measure A0(x) far away from
the muonium atom we would need to average over all Fock states and find that the its
monopole (1/r) component vanishes (or more generally, is proportional to the sum of the
constituent charges). On the other hand, if the probe were so close to the constituents that
it weights the various Fock states differently it would detect the individual Fock components
(3.18) of the potential.

With ν = j (= 1, 2, 3) in (3.15) even the A0 field does not contribute (∂0 A0 = 0) and
thus
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(EOM in QED)

|E, t = 0〉 =
∫

dy1dy2 ψ†
e(t = 0,y1) χ(y1,y2) ψ†

µ(t = 0,y2)|0〉R

|0〉R = N−1
∏

p,λ

d†eb
†
µ|0〉
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13QED example: e–µ+ (II)

The matrix elements of the EOM determine A0 for each Fock state

The equal-time Bethe-Salpeter wave function (with explicit Dirac indices for clarity)
should have a stationary time dependence,

φαβ(t;x1,x2) = R〈0|ψ†
µβ(t,x2)ψeα(t,x1)|E, t〉 = e−iEtφαβ(t = 0;x1,x2) (3.13)

where φαβ(t = 0;x1,x2) = χαβ(x1,x2) follows from the anticommutation relation (3.4)
and (3.12).

Matrix elements of the operator equation of motion for the photon field Aν

∂µFµν(x) − e
∑
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ψ̄i(x)γνψi(x) = 0 (EOM) (3.14)
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]
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]
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where we used

ψe(0,x)†ψe(0,x)|E, 0〉 = ψ†
e(0,x)

∫
d3y2χ(x,y2)ψµ(0,y2)|0〉R (3.17)

The standard solution is

A0(x) =
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4π

(
1

|x − x1| −
1
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)
(3.18)

The interpretation of this result differs from the case where A0(x) is regarded as a fixed
external field, which is sampled by the charged particles according to their positions x1 and
x2. Now there is no external field but rather a bound state (3.10) which is a superposition
of Fock states. The gauge field A0(x) is constrained for each Fock component and each
instant of time by the QED equation of motion. If we would measure A0(x) far away from
the muonium atom we would need to average over all Fock states and find that the its
monopole (1/r) component vanishes (or more generally, is proportional to the sum of the
constituent charges). On the other hand, if the probe were so close to the constituents that
it weights the various Fock states differently it would detect the individual Fock components
(3.18) of the potential.

With ν = j (= 1, 2, 3) in (3.15) even the A0 field does not contribute (∂0 A0 = 0) and
thus
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⇒

⇒

A0(x;x1,x2) = Λ2 !̂ · x +
e

4π

(
1

|x− x1| −
1

|x− x2|

)
−∇2

xA0(x;x1,x2) = e
[
δ3(x− x1)− δ3(x− x2)

]

is determined by stationarity of the action: !̂ = !̂(x1,x2) ‖ x1 − x2

−
1

4

Z
d3x FµνF µν = 1

2Λ4
Z

d3x +
1

3
eΛ2!̂ · (x1 − x2) + O

“
e2

”

The orientation of the electric field ∇A0 depends on the positions x1, x2

– but the field measured at a distance involves a sum over all Fock states
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14QED example: e–µ+ (III)

A0(x;x1,x2) = Λ2 x1 − x2

|x1 − x2| · x +
e

4π

(
1

|x− x1| −
1

|x− x2|

)
The principle of stationary action thus allows a linear instantaneous potential

but only data tells us to choose ΛQED = 0 ,  ΛQCD ≠ 0 .

Relativistically moving charges also give rise to transverse A⊥ ≠ 0.
These do not interfere with the linear A0 potential and contribute at O(e2)

⇒ This treatment is accurate only to O(e) . 
The –α/r Coulomb potential is a perturbative correction.

Proceeding as for the Dirac equation, and remembering the Fock state 
dependent phase from the O(eΛ2) interference term in

exp

»
−

i

4

Z
d3x FµνF µν

–
we find the BSE:
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15QED example: e–µ+ (IV)

γ0(−i∇1 · γ + me)χ(x1,x2) − χ(x1,x2)γ0(i∇2 · γ + mµ)

= [E − V (x1,x2)]χ(x1,x2)

where χ(x1,x2) is the 4x4 wave function of the e–(x1) µ+ (x2)〉 Fock state, and
the potential

where the last result is obtained as the radius of the sphere S tends to infinity. Hence the
interference term gives a finite contribution to the action, which which minimizes the field
energy E0 = −Lint

A when !̂ points along x1 − x2. Thus

A0(0,x) = Λ2 x1 − x2

|x1 − x2|
· x +

e

4π

(
1

|x− x1|
− 1

|x− x2|

)
(3.33)

The linear term gives a contribution eA0(0,x1)− eA0(0,x2) = eΛ2 |x1 −x2| to the contri-
bution of HI in (3.23) and −Lint

A (3.32) to the phase E0 defined in (3.21). The combined
contribution appearing in the bound state equation (3.22) gives the confining potential

V (x1,x2) =
2
3

eΛ2 |x1 − x2|−
e2

4π

1
|x1 − x2|

(3.34)

We recall that Λ should be independent of the Fock state coordinates x1 and x2 for
the bound state equation to be unaffected by the infinite phase ∝ Λ4V . The dependence of
the unit vector !̂ in (3.30) on x1−x2 is analogous to the dependence of the direction of the
electric field on the Fock state of the Hydrogen atom. Both are required by the stationarity
of the action. Due to cancellations between Fock components with x1 ↔ x2 an external
probe would not detect the linear potential unless it is close enough to the bound state to
distinguish the individual Fock state contributions to the potential.

In QED we obviously need to set Λ = 0 to agree with experiments. In QCD (to be
discussed below) we need a linear potential in order to understand quark confinement and
the hadron spectrum. Motivating Λ $= 0 in a semi-classical approximation of QCD requires
an understanding of the true QCD ground state. Lattice calculations presently provide the
best evidence for an effective linear potential in QCD.

In the above discussion we set A = 0, which is consistent with the equation of motion
(3.14) only for non-relativistic bound states. Transverse photon exchange contributes at
leading order to the binding even in the ordinary Hydrogen atom when it its center of
mass is moving relativistically [13]. On the other hand, a homogeneous solution of the
equations of motion which gives a linear A0 potential is allowed for any momenta and by
itself results in confined bound states. Hence we may consider the order e2 contributions
as perturbative corrections to the solutions obtained with a purely linear potential,

V (x1,x2) =
2
3

eΛ2 |x1 − x2| (3.35)

4. Bound state equation in QCD

Here we establish a bound state equation similar to (3.25) based on the QCD lagrangian

LQCD = −1
4Fµν

a F a
µν +

∑

f=u,d

ψ̄A
f (i/∂ − g /AaT

a
AB −mf )ψB

f

Fµν
a = ∂µAν

a − ∂νAµ
a − gfabcA

µ
b Aν

c (4.1)

For the ud̄ bound states we consider there are no annihilation contributions. As discussed
above for QED we work at O (g) with a linear potential analogous to (3.35) which arises
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is purely linear at O(e).

Since this equation has been derived at O
(
!0

)
from first principles it

may be regarded as a “Born term” for bound state calculations.

It is a natural extension of the Dirac equation and as such was proposed
by Breit already in 1929!

It has been studied phenomenologically for a
linear + 1/r potential

Suura et al (1977)
Krolikowski et al
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16Extension to ud mesons–from the homogeneous solution of the field equations for the instantaneous Coulomb fields
A0

a. We neglect perturbative, O
(
g2

)
contributions to the bound states.

In analogy to (3.11) we use the retarded vacuum as boundary condition,

|0〉R = N−1
∏

p,λ,A

dA†
u (p, λ) bA†

d (p, λ)|0〉 (4.2)

which at the level of our approximation (interactions via the instantaneous A0
a fields) gives

the same results for bound states as the standard perturbative vacuum |0〉. Since the
product includes all u and d quark color indices A this state is a color singlet. An arbitrary
SU(3) transformation U transforms b†A → UABb†B and hence (naming the colors 1,2 and 3)

b†1 b†2 b†3 →
∑

A,B,C

P (A, B,C) U1AU2BU1C b†1 b†2 b†3 = detU b†1 b†2 b†3 (4.3)

where the sign P (A, B,C) = ±1 for even/odd permutations A, B,C arose from permuting
the fermion operators and detU = 1. The retarded vacuum is similarly Lorentz invariant,
since UΛb†p U−1

Λ = b†Λp only amounts to a reordering of the momenta.
In the interaction picture the fields satisfy

ψA
u (t,y)|0〉R = ψ†

d(t, y)|0〉R = 0 (4.4)

The ud̄ bound state at t = 0 is similarly to (3.10) expressed as

|E, t = 0〉 =
∫

dy1dy2 ψA†
u (t = 0,y1)χ

AB(y1,y2)ψ
B
d (t = 0,y2)|0〉R (4.5)

and we expect to find a color singlet wave function,

χAB(y1,y2) = δABχ(y1,y2) (4.6)

Stationarity of the Bethe-Salpeter amplitude implies

φCD
αβ (t; x1,x2) ≡ R〈0|ψD†

dβ (t,x2)ψC
uα(t,x1)|E, t〉 = e−iEtφCD

αβ (t = 0;x1,x2) (4.7)

which determines its time derivative at t = 0,

i
dφCD

αβ (0;x1,x2)
dt

= R〈0|i
dψD†

dβ (0,x2)
dt

ψC
uα(t,x1)|E, 0〉 + iψD†

dβ (0,x2)
dψC

uα(0,x1)
dt

|E, 0〉

+R〈0|ψD†
dβ (0,x2)ψC

uα(0,x1)[HI(0) + E0]|E, 0〉 = E φCD
αβ (0;x1,x2) (4.8)

As in (3.32), the Fock-state dependent field energy E0 of O (g) arises from the interference
between the O

(
g0

)
homogeneous (linear) field with the O (g) Coulomb field A0

a,

E0 = −1
2

∑

a

∫
d3x∇A0

a(x)∇A0
a(x) (4.9)

where the infinite O
(
Λ4

a V
)

term needs to be independent of the Fock state. At O (g) in
the bound state equation (4.7) we need to keep only the leading O

(
g0

)
linear potential in
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HI(t) = g
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f=u,d

∫
d3xψA†

f (t,x)A0
a(x)TAB
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f (t, x) (4.10)
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Lorentz invariant, color singlet
retarded vacuum

from the homogeneous solution of the field equations for the instantaneous Coulomb fields
A0

a. We neglect perturbative, O
(
g2

)
contributions to the bound states.
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∏
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dA†
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d (p, λ)|0〉 (4.2)

which at the level of our approximation (interactions via the instantaneous A0
a fields) gives
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where the sign P (A, B,C) = ±1 for even/odd permutations A, B,C arose from permuting
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dt
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Color singlet wave function

Fock state matrix element of the QCD equations of motion:

Find O(g) solution with linear potential in abelian components:

A0
a(x;x1,x2, C) = Λ2

a ! · x +
gTCC

a

4π

(
1

|x− x1| −
1

|x− x2|

)
a = 3, 8
C: quark color

R〈0|ψC†
dβ (t,x2)ψC

uα(t,x1)
[
∂µFµν

a + gfabcF
µν
b Ac

µ − g
∑

f=u,d

ψ̄A
f γνTAB

a ψB
f

]
|E, t〉 = 0

Ansatz:



Paul Hoyer Krakow July 17, 2009

17Extension to ud mesons (II)–

The interaction hamiltonian (4.10) in the bound state equation (4.7) with C = D

contributes (no sum on C)

R〈0|ψC†
dβ (0,x2)ψC

uα(0,x1)HI(0)|E, 0〉 = g
∑

a

TCC
a

[
A0

a(x1)−A0
a(x2)

]
χ(x1,x2)

= g
∑

a

Λ2
a |TCC

a (x1 − x2)|χ(x1,x2) (4.18)

where χ(x1,x2) is the color singlet wave function (4.6). Self-consistency requires that the
potential is the same for quarks of any color. Taking into account also the field energy
(4.17) the potential is

2g

3

∑

a

Λ2
a |TCC

a (x1 − x2)| =
2g

3
|x1 − x2)|×






1
2Λ2

3 + 1
2
√

3
Λ2

8 for C = 1, 2
1√
3
Λ2

8 for C = 3

= gΛ2|x1 − x2)| for Λ2
3 =

1√
3
Λ2

8 ≡
3
2
Λ2 (4.19)

Using (3.7) the bound state equation (4.7) we find that the color singlet ud̄ wave function
satisfies

γ0(−i∇1 ·γ +mu)χ(x1,x2)−χ(x1,x2)γ0(i∇2 ·γ +md) = [E−V (x1,x2)]χ(x1,x2) (4.20)

where
V (x1,x2) = gΛ2|x1 − x2)| (4.21)

This equation should be accurate to O (g) including relativistic effects. Λ is a free parameter
with dimension of mass. Higher order corrections in g (gluon exchange, . . . ) needs to be
added perturbatively.
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Some interesting properties of the solutions:

• Lorentz covariance:

• Linear Regge trajectories:  α´= 1/8gΛ2

• High relative momentum components with oscillating phase

• Chiral symmetry breaking

E =
√

k2
CM + M2 χ transforms in a novel way

V (x1,x2) = gΛ2|x1 − x2|
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χ(x1,x2) = exp
[
ik · (x1 + x2)/2

]
φ(x1 − x2)

Lorentz covariance

The Lorentz symmetry of QCD guarantees (for a calculation correctly done to 
a given order in     and g) that the energy eigenvalues are given by

The wave function of a bound state with CM momentum k has

The equation for φ(x) becomes (for m1 = m2 = m):

−i∇ · [α,φ] + 1
2k · {α,φ} + m

[
γ0,φ

]
= (E − V )φ

where the solutions φ(x) and E depend on the CM momentum k.

!

E =
√

k2
CM + M2

This is indeed the case for the above equation! 
And it only holds for a purely linear potential V(|x|).

P.H., PL B172 (1986) 101
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19Lorentz covariance (II)

How should relativistic, equal-time wave functions transform under Lorentz 
boosts? The above bound state equation gives, for k = (0,0,k):

γ0φk(s) = eζα3/2γ0φk=0(s)e−ζα3/2

for φk(s) ≡ φk(x1=0, x2=0, x3(s)) on the z-axis and with the 
“invariant distance” s defined by

s(x3) = 1
2x3

[
E − 1

2V (x3)
]

tanh ζ(s) = − k

E − V
and

Note: For V << E this reduces to standard Lorentz contraction,
but otherwise the interpretation of s is not obvious.

The present field theoretic derivation may allow to better understand
the above Lorentz transformation properties.
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20Wave function properties (in CM, k = 0)

Separating the angular dependence, the wave function may be described by a 
set of radial functions F(r). For the pion trajectory, with P = (-1)J+1 , C = (-1)J :

F1(r) = − 2im

E − V
F2(r)

• E = V(r) is a singular “turning point”

• Requirement that F1(r) is locally normalizable at  E = V  quantizes E

• F2(r → ∞) ∝ exp[ iV´ r2] : “Klein Paradox” corresponds to multiple pair 
production in a strong field. Recall that wave function in retarded vacuum 
implicitly describes many pairs, hence need not be normalizable.

• High relative momenta between quarks probed at end-points of 
distribution amplitudes and in high energy Regge exchange.

F ′′
2 (r) +

(
2
r

+
V ′

E − V

)
F ′

2(r) +
[

1
4 (E − V )2 − J(J + 1)

r2
−m2

]
F2(r) = 0

Geffen and Suura, PR D16 (1977) 3305



Paul Hoyer Krakow July 17, 2009

21

• E F1(0) = -2im F2(0) is required by axial vector divergence relation, and is 
satisfied for V(0)=0 (purely linear potential).

• Chiral limit of m → 0 and E → 0 (pion; turning point → 0) is subtle

• “Pion” wave function with m = E = 0 is locally normalizable and given by 
a Bessel function:  F2(r) = J0(gΛ2 r2/4)

F1(r) = − 2im

E − V
F2(r)

Remarks on chiral symmetry

Geffen and Suura, PR D16 (1977) 3305
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22Outline of Talk

• Recall some properties of the Dirac equation

• Introduce “retarded” boundary condition – OK at

• Determine A0  from operator equation of motion (for each Fock state) 

• Allow homogeneous solution: linear potential A0 = c ⋅ r

• Fix direction of c by stationarity of action (for each Fock state)

• Calculate to O(g) , ignore O(g2)  (hence use purely linear potential)

• Impose stationarity on equal time        bound state

• Find meson wave functions with interesting phenomenology

• Observe non-trivial Lorentz covariance for a linear potential

O
(
!0

)

qq̄


