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Summary

e In standard perturbation theory, amplitudes at each order in o (and /) are
essentially unique and obey symmetries like Lorentz invariance.

e Bound state poles appear where the expansion diverges
—> the situation for relativistic bound states remains murky

e [ shall discuss how to derive from Lo p a “Born approximation” for
mesons, which is valid at lowest order in /7 (no loops).

e The quarks will be bound by the instantancous A" potential fixed by the
QCD equations of motion (EOM).

e Alinear A" potential emerges (rather trivially) as a homogeneous (non-

perturbative) solution of the EOM.

e The correctness of the procedure (at lowest order in /2 and o) is supported

by a highly non-trivial Lorentz covariance for the bound states, defined at
equal time 1n all frames.
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Opportunities

The availability of “Born term” relativistic wave functions derived from the
Lagrangian can teach us about hadron structure:

e The relation between the CM and Infinite Momentum frame (Light-
Front) wave functions.

e High momentum components in the bound states (related to end-point
behaviour of distribution amplitudes and Regge behaviour).

e Chiral symmetry issues

e This approach aims at an understanding of the basis of the
phenomenologically successful Quark Model
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Outline of Talk

e Recall some properties of the Dirac equation (external A° field)
* Introduce “retarded” boundary condition — OK at O (h°)
e Fix A° from operator equation of motion (for each 49 Fock state)

e Allow homogeneous solution: linear potential 4 = ¢ - r

e Fix direction of ¢ by stationarity of action (for each Fock state)

e Calculate to (/(g) , ignore (/(g”) (hence use purely linear potential)

e Impose stationarity on equal time ¢¢ bound state
e Find meson wave functions with interesting phenomenology

e Observe non-trivial Lorentz covariance for a linear potential
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Electron scaﬁering in a Coulomb potential

S K K S
—S+SKG Instantaneous potential 4°(k) does not

change the energy E of the electron

At a bound state pole: G(F,q) = %(IER];?Z) R=SKR
' d3k ,
R @) = e | gy (0n" A RO a — k)
f

Fourier transforming;:

— iV -y + ey A(x) + m] R(Ep,z) = Egy’ R(Eg,x) "™

equation
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Time ordering the scattering events

E; >0 E; <0
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At fixed 11 < £, the intermediate energy F; — i\/ k> 4 m2
can be negative: Pair production

The Dirac wave function contains an infinite number of e"e™ pairs

Good news: Such a multiparticle system can be described by
the “one-particle” Dirac wave function R(Er, X)

But then: What exactly does R(Er, x) describe?
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The retarded boundary condition

The Coulomb scattering at fixed p® > 0 is insensitive to the
Feynman ie prescription at the negative energy pole, pO = — \/ p? + m?

pt+m
(p° — /p? + m? +ie)(p® + /P + m2—ic)

Sr(p) =1

Hence the bound state poles would appear at the same energies using the
retarded propagators

. pt+m
:Z . .
(P — /D% + m? +ie)(p° + /P2 + m?+ic)

Sr(p)

Now the time ordering 1s trivial: There 1s only forward propagation in time
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The retarded boundary condition (II)

Ei>0
Ei <0
E E E E u o FE
Using Sk: >
ki k> = klé % k>

Thus R(ERr, x) 1s the wave function of the single electron Fock state
defined through the retarded boundary condition.

This 1s very different from the physical, Feynman Fock state distribution

... but the positions of the bound state poles are
unaffected by the choice of boundary condition.

Preventing the electron from moving backwards also gives it a smooth
time development:

— 0T _ 053 The rhs. would be
Sr(t=0",z) =~7"0"(z) non-local in x for S#(#=0,x)
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Field theoretical formulation

Retarded propagator: Sr(x —y) = r(O| T[¢(2)¥(y)] 10)r

where |0)p = N~ * H d; Al0) s the “retarded vacuum”, for which

0@ = [ 3 [ulpNe " by + o e d], | 10)7 = 0
A
Hence in the Interaction Picture:

Hy(1)0) 5 = ¢ / a3z A% () ' (1, @)t 2)[0) = O

No particle production in the retarded vacuum.

The retarded propagator 1s not allowed 1n loop integrals!
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Rederivation of the Dirac equation

The bound state: |E,t = 0) = /dgwa(t =0,x)p(x)|0)r

where ¢(x) 1s the Dirac wave function.

Oy (t, z)|E, )

R
o(x) exp(—iEt) worastationary

The B-S amplitude: ¢(t, ZB)

state
From
(02 002 1 0) 4 g0t @) Hy 1) = Bo(0.2)

follows the Dirac equation: (—iV - v + ey’ A%(x) + m)p(x) = E7%¢(x)
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Application to QED (Abelian) and QCD bound states

Claim: There 1s a limit in which the dynamics 1s analogous
to the external field case (Dirac equation), and to which
perturbative corrections may then be applied.

h — 0 : No loops (which would be sensitive to the ie prescription)
Gauge fields 4,, are fixed by stationarity of the action

2
o= i— — () : Photon/gluon exchanges treated perturbatively
o

The principle of minimal action allows a linear potential A" =¢ - r .

c=01m QED, ¢ =0 1n QCD amounts to a choice of boundary conditions.
The procedure to be described is correct to (/(2) .

A non-trivial Lorentz covariance of the equal-time bound states
lends support for the correctness of the approximation at the given order.
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QED example: eu*

Bound state:

Bt =0) = / dyrdyy U1t = 0,1) (g1, 9a) UL (¢ = 0,4)[0)
Retarded vacuum:

0)r = N~ Hd*b* = Pe(t,9)|0)r = ¥}, (t,Y)0)r = 0

Bethe-Salpeter wave function:
¢O¢ﬁ(t7 L1, .’L'Q) — R<O|¢Lﬁ(t7 wQ)wea(ta $1)|E, t> — G_iEtQSaﬁ(t — 07 L1, 33'2)

Determine the gauge fields from the operator equation of motion:

O™ (x) —e Z i(x)yi(xr) =0  (EOM in QED)

1=e,
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QED example: e"u* (IT)
The matrix elements of the EOM determine A° for each Fock state

r{0[ 5(0,22)1hea (0, 1) (EOM) [E,0) =0 =

—V?BAO(m; XT1,To) = e[éS(w —x1) — 53(:13 — wg)} =>

A 1 1
AO(fL';iBl,iUQ):AQE'm—Fi( )

A \ |z —x1| |x — o
£=10 (T1,x2) || £1 — T2 is determined by stationarity of the action:

1 ]_ ~
_Z | @PxeF, F*" = IA* | &Pz + —eA?D . (1 —x2) + O e?
4 a 2 3

The orientation of the electric field VA® depends on the positions x1, x>
— but the field measured at a distance involves a sum over all Fock states
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QED example: eu* (III) N

The principle of stationary action thus allows a linear instantaneous potential

— 1 1
AP (x; @, 22) = N f— S 6 <\ )

T — zo| dr \ |z — 21| |z — a2

but only data tells us to choose Aqgep =0, Aqcp = 0.

Relativistically moving charges also give rise to transverse A+ = 0.
These do not interfere with the linear 4° potential and contribute at ((e?)

—  This treatment 1s accurate only to (/(e) .
The —a/r Coulomb potential 1s a perturbative correction.

Proceeding as for the Dirac equation, and remembering the Fock state
dependent phase from the ((eA?) interference term in

,I: 14
exp [—Z/ “x FMVF“ } we find the BSE:
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QED example: eu (IV)
V(=iV-y +me)x(z, @) —  x(w1,22)7°(iV2 -y +my,)

= [E—V(xy,x2)|x(21, T2)

where 7y (x1,x2) is the 4x4 wave function of the e (x1) u' (x2)) Fock state, and

the potential

2
V(xy,xo) = 3 e\? |1 — x2| is purely linear at ()(e).

Since this equation has been derived at O (ho) from first principles it

may be regarded as a “Born term” for bound state calculations.

It 1s a natural extension of the Dirac equation and as such was proposed
by Breit already in 1929!

It has been studied phenomenologically for a Suura et al (1977)
Paul Hoyer Krakow July 17, 2009 linear + 1/ r pOtential Krolikowski et al



16

Extension to ud mesons

0)g = N1 H 4 (p, \) bgﬁ (p, )|0) Lorentz invariant, color singlet

retarded vacuum
DA\ A

Meson state:

’Eat — O> — /dy1dy2 W?T(t = 0, y1)XAB(Z/17 yz)lbc]ig(t — an2)‘O>R

Ansatzz X" C(W1,v2) = 6" Px(y1,y2)  Color singlet wave function

Fock state matrix element of the QCD equations of motion:

R OS] (w20, (L) [0,F1 + gfuc A g S b TR 1B, 6 = 0
f=u,d

Find ()(g) solution with linear potential in abelian components:

TEC 1 1 =3, 8
A(x; —A2¢. x4 Lo = a=>,
(@1, T2, C) ot T+ e <|w—w1\ \a:—w2|) C: quark color
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Extension to ud mesons (IT)

Bound state equation for color singlet wave function is as in QED:

V=iV 1y +mu)x(x1, 2) — x(x1, 22)7° (1V2 -y +mg) = [E—V (21, 22)]x (21, T2)

V(wla wz) — QAZ‘wl - wz\ A2 = A?

3
A2="C
)

5

Some 1nteresting properties of the solutions:

e Lorentz covariance: | = \/ kQC A + M2y transforms in a novel way
e Linear Regge trajectories: o = 1/82A2
e High relative momentum components with oscillating phase

e Chiral symmetry breaking
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Lorentz covariance
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The wave function of a bound state with CM momentum k has

X(.’El, CEQ) — eXp [Z’{t . (281 -+ %2)/2} ¢(£IZ‘1 — ZEQ)

The equation for ¢(x) becomes (for m = m2 = m):

A [Oﬂ, ¢]

m [707¢] — (E o V)¢

where the solutions ¢(x) and £ depend on the CM momentum k.

The Lorentz symmetry of QCD guarantees (for a calculation correctly done to
a given order in /2 and 2) that the energy eigenvalues are given by

E = \/k%M+M2

This 1s indeed the case for the above equation! P.H., PL B172 (1986) 101

And 1t only holds for a purely linear potential V(|x]).
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Lorentz covariance (II)

How should relativistic, equal-time wave functions transform under Lorentz
boosts? The above bound state equation gives, for £ = (0,0,k):

VO or(s) = €327 pp_o(s)e /2

for ¢i(s) = Pr(x1=0, x2=0, x3(s)) on the z-axis and with the
“invariant distance” s defined by

s(xs) = sa3|E — 5V (x3)] and tanh ((s) = ——=—=>

Note: For VV << E this reduces to standard Lorentz contraction,
but otherwise the interpretation of s 1s not obvious.

The present field theoretic derivation may allow to better understand
the above Lorentz transformation properties.
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Wave function properties (in CM, k = 0)

Separating the angular dependence, the wave function may be described by a
set of radial functions F(7). For the pion trajectory, with P = (-1)/*! , C= (-1)’:

21m
Fi(r)=— Fy(r) Geffen and Suura, PR D16 (1977) 3305
E-V
2 vV’ , J(J+1) 5
B+ (24 5y ) B0 + [ -2 = L el b =

e [E = JV(r)1s asingular “turning point”
e Requirement that F1(7) 1s locally normalizable at £ = V' quantizes £

o Fo(r— ) o expl iV r?]: “Klein Paradox” corresponds to multiple pair
production in a strong field. Recall that wave function in retarded vacuum
implicitly describes many pairs, hence need not be normalizable.

e High relative momenta between quarks probed at end-points of

distribution amplitudes and 1n high energy Regge exchange.
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Remarks on chiral symmetry 21

e F F1(0)=-2im F>(0) 1s required by axial vector divergence relation, and is
satisfied for V(0)=0 (purely linear potential). Geffen and Suura, PR D16 (1977) 3305

e Chiral limit of m — 0 and £ — 0 (p1on; turning point — 0) 1s subtle

“Pion” wave function with m = E = 0 is locally normalizable and given by

a Bessel function: [2(7) = J()(g/\2 r?/ 4)
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Outline of Talk “

e Recall some properties of the Dirac equation
* Introduce “retarded” boundary condition — OK at O (h°)
e Determine A" from operator equation of motion (for each Fock state)

e Allow homogeneous solution: linear potential 4 = ¢ - r

e Fix direction of ¢ by stationarity of action (for each Fock state)

e Calculate to (/(g) , ignore (/(g”) (hence use purely linear potential)

e Impose stationarity on equal time ¢¢ bound state
e Find meson wave functions with interesting phenomenology

e Observe non-trivial Lorentz covariance for a linear potential
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