

Ablation properties of borosilicate glass under continous wave laser

Phd student: Olgierd Jeremiasz,

April 28, 2023

Motivation

Part of Implementation Phd "Laminating processes of <u>photovoltaic (PV) modules</u> based on materials modified by <u>laser surface treatment</u> techniques".

Supervisors:

total

- dr hab. inż. Kazimierz Drabczyk, IMIM PAN
- dr inż. Grażyna Kulesza-Matlak IMIM PAN
- Wojciech Nikiel Helioenergia Sp z o.o.

PV module area component

Total without frame

Silicone cells only

Left unused

Aim:

Re-direct solar radiation from inter-cell space to increase module efficiency at low cost

Key aspects:

• Printing + Laser = laser print

Laser printing step 1: mid infrared CO₂ laser to <u>engrave glass</u>

Laser printing step 2: Laser Induced Backward Transfer (LIBT) to print light reflecting coating

Gaussian energy distribution across the beam

$$E(r) = E_0^{max} \exp\left(-\frac{2r^2}{w_0^2}\right)$$

Diffuser- step 1 modeling

Groove width formula

$$W = \sqrt{2}w_0 \sqrt{\ln \frac{4P}{\Pi w_0 F_{th} V}}$$

Groove depth formula

$$d = \sqrt{\frac{2}{\Pi} \frac{A P}{w_0 Q \rho V}}$$

W – groove width

P – laser power

F_{th} – ablation treshold of the material

- V- scan speed
- d groove maximum depth
- P laser power
- A total absorption (1 less Reflection less Transmission)
- Q specific enthalpy of material
- ρ density of material
- V- scan speed

Ablation treshold and beam diameter determination

$$F_0^{av} = \frac{E_{pulse}}{\Pi w_0^2}$$

Solving Gauss with $r = \frac{W}{2}$ and recognizing that W=0 at threshold laser fluence

$$W^2 = 2w_0^2 \ln\left(\frac{F_0^{av}}{F_{th}}\right)$$

Research on laminating processes of photovoltaic modules based on materials modified by laser surface treatment techniques. - Olgierd Jeremiasz

April 28, 2023

Challenges ablation treshold and beam diameter measurement experiment

- Accuracy of Scan speed (V) nad Power (P) measurement V is set up in machine. F=P/(W × V)
- Float glass has 2 sides which differ in many physical properties
 - Ablation treshold is supposed to be lower at ",Tin side".

- By experiment focusing is most important parameter
- By experiment accuracy needed: ±0.3mm
- Beam delivery system not precise enough,
- Work table leveling,
- Laser power fluctuates warm up needed but anyway fluctuates ±4%
- Beam delivery system is subject to contamination.
- Control driver <-> stepper motors limitations, accuracy vs. speed.

Challenges glass engraving

Laser beam – focusing:

Minimum 76.2mm focal length is needed to protect both: the lens and the processing zone F= 76.2mm results in too large laser spot diameter. Solved by beam expander in beam delivery system.

Laser beam <-> glass physics:

Expansion followed by compression creates stress leading to cracking. (HAZ) Debris and HAZ affected material is to be removed mechanically. Repeatability of this proces. Solved by high pressure water cleaning – non mechanical.

Groove efficiency evaluation:

Solved by digital evaluation of groove geometry

X|S|)

Diffuser-step 2

LIBT printing

Material of choice for LIBT: Zinc – 99% Very low cohesive energy Results in high ablation yield

Finished Diffusor step1 + step 2 + lamination

PV modules tech scale

- Lab scale (200x200mm) groove efficiency: 45%
- Tech scale (1000x500mm) groove efficiency: 35%.

PV module 1000x500mm

- Lamination ok
- Mechanical withstand ok
- Electrical safety ok

But

PV modules tech scale challenges

Diffusor overlaping
Creates PV cell shadow multiplied by number of cells in series
Mitigation:

- Allow more margin,
- Increase precision.
- 2. Comparability of 2 modules

We look for 2% difference. Production standard is \pm 2%. Measurement accuracy is \pm 2%.

Mitigation:

- Cell shuffle
- Make reference and test modules at the same time.

Olgierd Jeremiasz

Thank you!

This PhD is carried out as part of the "Implementation Doctorate" program of the Polish Ministry of Science and Higher Education Project: DWD/4/42/2020