

Background estimation in the search for $H^+ \rightarrow \tau \nu$ in the ATLAS experiment

Cracow, 28.04.2023

Speaker: Monika Juzek

Supervisor: dr hab. Pawel Bruckman de Renstrom

World of subatomic particles – the Standard Model

Beyond the SM – The search for $H^+ \rightarrow \tau v$

Valid problems of the SM:

- does not inlude gravity,
- dark matter and dark energy,
- neutrino masses etc.

3

Beyond the SM – The search for $H^+ \rightarrow \tau \upsilon$

New fundamental theory needed

Minimal Supersymmetric Standard Model (MSSM) predicting additional particles like charged Higgs boson

To prove (or disprove) a MSSM theory we're looking for $H^+ \rightarrow \tau v$ process in the ATLAS data collected in 2015-2018

Previous analysis using 2015-2016 dataset: JHEP 09(2018)139

Tau lepton in ATLAS analyses

 Tau lepton is a short-lived particle, hence we can observe only its decay products

 It is the heaviest from leptons, so it can decay into mostly hadrons (particles made of quarks) or leptons

• Hadronically decaying taus are difficult to identify in data

Tau decay

Background estimation - introduction

In particle physics analysis:

> "signal" - whatever particular process we are interested in

 $H^+ \rightarrow \tau v$

Entries

We want to separate them by using cuts set of restrictions on the particle parametrs that would give us the biggest signal part possible (and lowest background)

> ",background" - processes which might look a little bit (or a lot) like the signal process we care about, but are not

Everything else

Reality

Perfect world

Background estimation

To estimate $H^+ \rightarrow \tau v$ background:

- Monte Carlo generators are used to predict which SM physical processes we can observe during collision ($t\bar{t}$, Wt, V+jets events)
- Machine learning (Recurrent Neural Networks) for **II**. proper tau identification

Background estimation

To estimate $H^+ \rightarrow \tau v$ background:

Main source of background comes from the jets misidentified as tau, these are poorly modelled by the **Monte Carlo method**

Jet - narrow cone of hadrons and other particles produced during collisions of gluons and quarks

Fake Factor Method

- Data-driven method of the fake-tau background determination
- The fake-au background in SR with the nominal object selection (au**ID**) is estimated from events with a reversed selection (anti- τ ID), using fake factors (FF) for certain control region (CR) defined as:

$$FF = \frac{N_{\tau-id}^{CR}}{N_{anti\tau-id}^{CR}} \xrightarrow[]{} \text{Events that} \\ \xrightarrow[]{} \text{pass } \tau \\ \text{identification} \\ \xrightarrow[]{} \text{Events that far the nominal } \tau \\ \text{identification} \\ \xrightarrow[]{} \text{identification} \\ \xrightarrow[]{} \text{for all } x \\ \xrightarrow[]{}$$

• Total number of background events from jets (N_{fakes}^{τ}) in signal region:

$$N_{\text{fakes}}^{\tau} = N_{\text{anti-}\tau}^{\text{SR}} \times \text{FF}$$

at

tion

at fail

 $ral \tau$

9

Fake Factor Method in $H^+ \rightarrow \tau v$ analysis

- Complication: some true taus sneak into the CR and the **"SR but fail ID" regions**
- Solution subtracting them with the use of MC:

$$FF = \frac{N_{\tau}^{CR}(\text{data}) - N_{\tau}^{CR}(MC, \text{true} - \tau)}{N_{\text{anti}-\tau}^{CR}(\text{data}) - N_{\text{anti}-\tau}^{CR}(MC, \text{true} - \tau)}$$

- Parametrization of the FFs : p_T^{τ} and numer of charged tracks (1-track or 3-track τ)
- In the $H \xrightarrow{\pm} \tau v$ analysis FFs are extracted in two CRs:
 - **Multi-jets CR** \rightarrow gluon-initiated jets .
 - **W+jets CR** \rightarrow quark-initiated jet Ι.

FF determination	FF application
Data	Data
CR	SR
Pass ID	Pass ID
CR Fail ID	SR but Fail ID

Quark/gluon composition determination

formula:

 α_{MI} parametr is calculated using a template-fit method:

• To obtain proper jets composition in a signal region, FFs from two CRs are combined using the

 $\mathrm{FF}_{\mathrm{SR}}^{\mathrm{comb}}(i) = \alpha_{\mathrm{MJ}}(i) \times \mathrm{FF}_{\mathrm{MJ}}(i) + (1 - \alpha_{\mathrm{MJ}}(i)) \times \mathrm{FF}_{\mathrm{W+jets}}(i)$

Validation of the FF method

τ+lepton channel

Full systematics of Fake Factor method

- I. the statistical uncertainties in the event yields entering the computation of FFs (each bin of their parameterization and for each control region)
- II. the level of contamination of true τ candidates fulfilling the anti- τ selection (varied by 50%)
- III. MC modeling of true tau identification scale factors error of 5% is implemented
- IV. the statistical uncertainty of the best-fit value of α_{MI}
- V. for the Υ distribution (used in RNN-based τ ID) the uncertainty of the inverse transform sampling method (Smirnov transformation for Υ)
- VI. the modelling of heavy-flavour jets mimicking τ candidates

Systematics of Fake Factor method in $H^{\pm} \rightarrow \tau \nu$ analysis (2015-2016 data)

Source of uncertainty

- Fake factors: jet composition
- Fake factors: statistical uncertainties
- Fake factors: prompt $\tau_{had-vis}$ in the anti-
- Fake factors: α_{MJ} uncertainty IV.
- Fake factors: Smirnov transform.
- Fake factors: heavy flavor jet fraction.

 \succ Estimation of the fake jets $\rightarrow \tau$ background is the main source of systematic uncertainties in the low- and intermediate-mass H^{\pm} search and the second major source (after the signal modelling) for large H^{\pm} masses

	$\tau_{had-vis}$ +jets	$ \tau_{had-vis}$ +lepton
	Effect on yield	Effect on yield
	1.6%	0.6%
	1.6%	1.7%
i- τ CR	+5.6%	+4.8%
	-8.3%	-7.2%
	7%	6.2%
	0%	0%
	5%	5%

Paper: JHEP 09(2018)139

Summary

- the Standard Model
- uncertainties
- improved analysis strategy

Thank you for your attention!

One of the key roles of the ATLAS experiment is to search for physics beyond

Data-driven Fake Factor method for fake τ leptons background estimation is an important part of the $H^{\pm} \rightarrow \tau \nu$ analysis. Optimization of the method and detailed uncertainties estimation are essential as a major source of systematic

Currently getting ready to publish results with full Run 2 (2015-2018) data with

$H^{\pm} \rightarrow \tau \nu$ search

- \blacktriangleright H^{\pm} bosons are predicted in different extensions of the SM that add a second doublet or triplets to the Higgs scalar sector (2HDM, NMSSM, Triplet, etc.)
- ▶ Investigated signal mass range: 80 GeV $\leq m_{H^{\pm}} \leq$ 3000 GeV
- \blacktriangleright H^{\pm} production process depends on the mass range but is typically associated with t and b quarks
- Analysis split into two sub-channels based on the decay mode of the associated *t*:
 - **t+jets:** most sensitive to high H^{\pm} mass
 - **t+lepton:** most sensitive to low and intermediate H^{\pm} mass
- The search using 2015+2016 data was published in: JHEP 09(2018)139

Analysis Overview

- Search for charged H^{\pm} decaying to τv using 139 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC during full Run-2 period
- Recurrent Neural Networks (RNN) based τ identification \rightarrow identification efficiency improved in the range 75–100% compared to one based on Boosted Decision Trees
- Parametrized Neural Networks (PNN) are trained to separate signal from all backgrounds (more in Zuzanna's talk)
- Backgrounds with prompt hadronic τ :

 \succ $t\bar{t}$, V+jets and diboson events: estimated with MC

Backgrounds with fake τ :

fake lepton $\rightarrow \tau$: estimated with MC

fake jets $\rightarrow \tau$: estimated with data-driven Fake Factor (FF) method

Event Selection & MVA Strategy

τ+jets channel

- 1 medium τ candidate with $p_T^T > 40$ GeV
- no loose leptons (e or μ) with $p_T > 20$ GeV
- ▶ ≥ 3 jets with p_T > 25 GeV, of which at least one is *b*-tagged
- $E_T^{\text{miss}} > 150 \text{ GeV}$
- ▶ *m*_T > 50 GeV

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau} E_{\rm T}^{\rm miss}(1 - \cos \Delta \phi_{\tau,\rm miss})},$$

New multivariate analysis technique, i.e. Parametrized Neural Networks (PNN), previously Boosted Decision Trees (BDT) used

PNN score used as a final discriminant in a likelihood fit

τ+lepton channel

- Exactly 1 ℓ (*e* or μ), with $p_T^{\ell} > 30$ GeV
- Exactly 1 medium τ with no additional loose or tighter τ leptons in the event
- ℓ and τ with opposite signs
- $E_T^{miss} > 50 \text{ GeV}$
- \geq 1 *b*-tagged jets

 $\Delta \phi_{\tau,miss}$ - the azimuthal angle between the τ candidate and the direction of E_{T}^{miss}

Tau identification using RNN

A multivariant discriminanat is a common tool for background estimation, which enables to differentiate correctly reconstructed tau leptons from the other objects. Right now a recurrent neural network (RNN) is used.

	Observable	1-prong	3-pro
Track inputs	$p_{\rm T}^{\rm seed jet}$ $p_{\rm T}^{\rm track}$ $\Delta \eta^{\rm track}$ $\Delta \phi^{\rm track}$ $ d_0^{\rm track} $ $ z_0^{\rm track} \sin \theta $ $N_{\rm IBL hits}$ $N_{\rm Pixel hits}$ $N_{\rm SCT hits}$	• • • • • • • • • • • • • • • • • • • •	• • • • • •
Cluster inputs	$p_{\rm T}^{\rm jet \ seed}$ $E_{\rm T}^{\rm cluster}$ $\Delta \eta^{\rm cluster}$ $\Delta \phi^{\rm cluster}$ $\lambda_{\rm cluster}$ $\langle \lambda_{\rm cluster}^2$ $\langle r_{\rm cluster}^2 \rangle$	• • • • • • • • • • • • • • • • • • • •	• • • • •
High-level inputs	$p_{T}^{uncalibrated}$ f_{cent} $f_{leadtrack}$ ΔR_{max} $ S_{leadtrack} $ S_{T}^{flight} f_{T}^{flight} f_{track}^{flight} f_{track}^{EM} $p_{T}^{EM+track}/p_{T}$ $m^{EM+track}$ m^{track}		• • • • • • • • • •

Definitions of control regions used in FF method

Multi-jets CR

at least one reconstructed τ_{had} candidate with $p_T^{\tau} > 30 \text{ G}$ number of jets 1 b-jet veto, electron and muon veto $E_T^{miss} < 80 \text{ GeV}$ $m_T(\tau, E_T^{miss}) > 50 \text{ GeV}$ transformed τ_{had} BDT score > 0.02

	W+jets CR
feV	at least one reconstructed $\tau_{\rm had}$ candidate with $p_{\rm T}^{\tau}>30~{\rm G}$
	one lepton (electron or muon)
	b-jet veto
	$p_{\rm T}$ of electron or muon > 30 GeV
	$60 < m_{\rm T}(l, E_{\rm T}^{\rm miss}) < 160 GeV$
	transformed $\tau_{\rm had}~{\rm BDT}~{\rm score} > 0.02$

The ATLAS experiment

ATLAS is the largest particle detector experiment at the Large Hadron Collider (LHC), a particle accelerator at CERN in Geneva.