# Institute of Metallurgy and Materials Science, PAS



# Structure and properties of protective and functional coatings deposited on metal surfaces

PhD student:

mgr inż. Arkadiusz Żydek

Institute of Metallurgy and Materials Science, PAS

Supervisor: Auxiliary supervisor : dr hab. Joanna Wojewoda-Budka, profesor PAS dr Marcela Trybuła



In collaboration with the professor Pavel Korzhavyi KTH Royal Institute of Technology, Stockholm

### Materials

#### Al alloys:

#### 1XXX - Aluminum min 99.00% - 1000 series

2XXX - Copper (Cu) - 2000 series

- 3XXX Manganese (Mn) 3000 series
- 4XXX Silicon (Si) 4000 series
- 5XXX Magnesium (Mg) 5000 series
- 6XXX Magnesium (Mg) Silicon (Si) 6000 series
- 7XXX Zinc (Zn) 7000 series
- 8XXX Other alloying elements 8000 series

#### AI:

Application: Light industry, aviation, nuclear reactors, metal-air batteries,

Low atomic mass and the presence of a protective native oxide layer on its surface.

#### Al-Mg

- Good corrosion resistance (oxidation and seawater)
- For cold and hot work
- Suitable for deep drawing
- Application:
  - Automotive industry
  - Ship structures
  - o Chemical industry
- Methods of protecting aluminum alloys against corrosion:
  - $\circ$  Anodization
  - o Chemical treatment
  - Organic coatings





### Literature review

Al oxidation, structure and growth kinetics of the oxide layer





### Literature review

Mechanisms of corrosion in water solution

Corrosion mechanism in an alkaline solution:

$$Al_{(s)} + OH_{(aq)}^{-} + H_2O \rightarrow AlO_{2(aq)}^{-} + \frac{3}{2}H_2$$

$$Al_{(s)} + OH_{(aq)}^{-} + 5H_2O \rightarrow [Al(OH)_4 * 2H_2O]^{-} + \frac{3}{2}H_2$$
Corrosion mechanism in an acidicsolution:
$$Al_{(s)} + H_2O \rightarrow AlOH_{(ads)} + H^+ + e^-$$

Kinetics of aluminum dissolution in an alkaline solution



Corrosion models

a) Point Defect Model for Pitting



b) Uniform Corrosion Model

Stage 1: Induction (no growth) Al<sub>2</sub>O<sub>3</sub> + H<sub>2</sub>O --> 2 AlOOH









### Literature review - protective coatings



**Oxide layer** 

**Anode layer** 

#### Graphene derivatives



S.J.R. Prabaka et al., Carbon 52 (2013)

#### Organic compounds: triazole derivatives, polymers



M. K. Shukla et al., JPCC 218 (2014)



Klodian Xhanari et al., Arabian Journal of Chemistry 12 (2019)

### Objective of the work

Description at the atomic level of the structure of oxide and organic layers deposited on AI and AI-Mg alloy substrates as well as corrosion properties using modern techniques of computational materials engineering in confrontation with the experiment.



- Determination of the structure and topology of the shell atoms network on the tested substrates
- Study of the adsorption mechanism of the tested organic coatings on substrates
- The need to study corrosion mechanisms of AI and AI-Mg alloys
- Investigation of the influence of oxide and organic layers on the rate of corrosion

### Methodology - Molecular Dynamics





### Methodology - Experiment





### Methodology - Reactive Force Field (ReaxFF)



$$E_{system} = E_{bond} + E_{lp} + E_{over} + E_{under} + E_{val} + E_{tors} + E_{vdWaals} + E_{Coulomb}$$

- Modeling of chemical reactions, formation and breakdown of chemical bonds.
- Hydrocarbon, transition metal catalyzed nanotubes, material applications such as lithium-ion batteries, TiO2, polymers and high-energy materials.

- Simulation of the formation and breaks of bonds during the oxidation of the metal surface
- Interactions of water solution molecules with metal surface

Adri C. T. van Duin et al., J. Phys. Chem. A (2001)

### Methodology - Voronoi analysis



- Topological analysis of networks of atoms and their connections
- Voronoi cells polyhedra whose centers are atoms, while the lines passing through the central atom and the nearest neighboring atoms also pass through the center of the walls of a given polyhedron
- Voronoi indices (n3.n4.n5.n6.n7), each subsequent digit determines the number of faces of a given type in the polyhedron. For ideal RSC and RPC structures, the Voronoi Indices are (0.12.0.0.0) and (0.6.0.8.0) respectively
- Observation of minimal perturbations of the crystal lattice





M. E. Trybula et al., J. Mater. Sci. 53 (2018)

A. Żydek, M. Wermiński, M. E. Trybula Com. Mat. Sci. 197 (2021)

### Methodology - Voronoi analysis - VC indices





A. Żydek, M. Wermiński, M. E. Trybula Com. Mat. Sci. 197 (2021)

### Methodology - Analiza Parametru Uporządkowania

This method consists in calculating the interatomic distances between the central atom and its neighboring atoms.

$$\zeta_{ab} = \sum_{i=1}^{CN} |r_a - r_b|$$

CN – coordination number for an ideal crystal lattice

 $r_a$  – atom position vector a

 $r_{b}$  – atom position vector b

- Topological analysis
- Observation of crystal lattice disturbances
- Complementary method with Voronoi analysis



#### Symmetrical tilt GB(210)[001]



A. Żydek, M. Wermiński, M. E. Trybula Com. Mat. Sci. 197 (2021)



### Research scheme MD









## AI 1a Oxidation AI – Structure and growth kinetics of the oxide







### **Oxidation AI – Concentration Profiles**





#### Chemical composition

|                               | AI [% mol] | O [% mol] |
|-------------------------------|------------|-----------|
| 673K; 0.005 g/cm <sup>3</sup> | 66.4       | 33.6      |
| 300K; 0.050 g/cm <sup>3</sup> | 55.2       | 44.8      |
| 673K; 0.050 g/cm <sup>3</sup> | 54.4       | 45.6      |

## Al 1a

### Oxidation AI – topology of AI polycrystal substrate











### Benzotriazole - adsorption energy

Comparison of two ReaxFF force field parameterizations with DFT results •



#### adsorption energy

|                                         |          | ΔΕ [eV] |          |          |
|-----------------------------------------|----------|---------|----------|----------|
| Substrate                               | Position | DFT     | ReaxFF 1 | ReaxFF 2 |
| Al(100)                                 | а        | -0.4715 | -0.3861  | -4.4140  |
| AI(100)                                 | b        | -0.4644 | -0.3861  | -4.4138  |
| a-Al <sub>2</sub> O <sub>3</sub> (0001) | а        | -2.4432 | -2.0283  | -6.2162  |
| a-Al <sub>2</sub> O <sub>3</sub> (0001) | b        | -1.2869 | -2.0232  | -6.2162  |

ReaxFF 1 - O. V. Mackenzie et al., J. Phys. Chem. C (2015) ReaxFF 2 – N. Wang et al.," J. Phys. Chem. C (2017)



PROGRAM **STER** 



In collaboration with the professor Pavel Korzhavyi and dr. Claudio Lousada KTH Royal Institute of Technology, Stockholm







Benzotriazole in a vacuum

1 molecule of benzotriazole

Benzotriazole in methanol

17 molecules of benzotriazole



#### Podłoże α-Al<sub>2</sub>O<sub>3</sub>(0001)/Al(111)



Podłoże tlenek Al





View with methanol

View without methanol









### Korozja podłoża Al

- Influence of the AI substrate structure on the corrosion mechanism in an water solution with an excess of OH- and H+ ions
- Influence of AI substrate structure on corrosion rate thickness change over time
- T=363K t=1ns







### Al substrate corrosion - concentration profiles



• T=363K t=1ns











#### Chemical composition

| Substrate   | рН | H<br>[% mol] | O<br>[% mol] | Al<br>[% mol] |
|-------------|----|--------------|--------------|---------------|
| Monocrystal | 1  | 17.1         | 30.2         | 52.7          |
|             | 13 | 25.3         | 31.0         | 43.7          |
| Polycrystal | 13 | 23.8         | 36.9         | 39.3          |

### Al Substrate Corrosion - Voronoi Analysis

- Characteristics of the type of defects in AI substrates after corrosion distribution of Voronoi indicies
- T=363K t=1ns

2a







| Perfe         | ct lattice    | Liquid-like    | /Amorphous     | Crystal d     | efects        |
|---------------|---------------|----------------|----------------|---------------|---------------|
| Group I       |               | Group II       | Group III      | Group IV      |               |
| (0.6.0.8.0.0) |               | (0.1.10.2.0.0) | (0.2.8.1.0.0)  | (1.3.4.3.1.0) | (1.3.5.4.2.0) |
|               |               | (0.1.10.3.0.0) | (0.2.8.2.0.0)  | (1.3.4.4.1.0) | (1.3.5.5.2.0) |
|               |               | (0.1.10.4.0.0) | (0.2.8.3.0.0)  | (1.3.4.5.1.0) | (1.3.5.6.2.0) |
|               |               | (0.1.10.5.0.0) | (0.2.8.4.0.0)  | (1.3.4.6.1.0) | (1.3.5.7.2.0) |
|               |               | (0.1.10.6.0.0) | (0.2.8.5.0.0)  | (1.3.4.7.1.0) | (1.4.3.4.2.0) |
|               |               | (0.1.11.3.1.0) | (0.2.8.6.0.0)  | (1.3.4.8.1.0) | (1.4.3.5.2.0) |
|               |               | (0.1.11.4.1.0) | (0.2.8.7.0.0)  | (1.3.5.2.2.0) | (1.4.3.6.2.0) |
| Lattice of    | listortions   | (0.1.12.3.2.0) | (0.2.8.8.0.0)  | (1.3.5.3.2.0) | (1.4.3.7.2.0) |
| Group V       | Group VI      | Group VIII     | Group IX       | Group VII     | Other V       |
| (0.5.2.5.0.0) | (0.4.4.3.0.0) | (0.3.6.2.0.0)  | (0.0.12.0.0.0) | (1.0.9.3.0.0) | -             |
| (0.5.2.6.0.0) | (0.4.4.4.0.0) | (0.3.6.3.0.0)  | (0.0.12.2.0.0) | (1.0.9.6.0.0) |               |
| (0.5.2.8.0.0) | (0.4.4.5.0.0) | (0.3.6.4.0.0)  | (0.0.12.3.0.0) | (1.1.8.1.1.0) |               |
| (0.5.2.9.0.0) | (0.4.4.6.0.0) | (0.3.6.5.0.0)  | (0.0.12.4.0.0) | (1.1.8.2.1.0) |               |
| (0.5.210.0.0) | (0.4.4.7.0.0) | (0.3.6.6.0.0)  |                | (1.1.8.3.1.0) |               |
|               | (0.4.4.8.0.0) | (0.3.6.7.0.0)  |                | (1.1.8.4.1.0) |               |
|               | (0.4.4.9.0.0) | (0.3.6.8.0.0)  |                | (1.1.8.5.1.0) |               |
|               |               | 1              |                | (1.1.8.6.1.0) |               |









### AI / AI oxide corrosion

• T=363K t=1ns







#### Roughness: Al / Layer

| рН | Ra [Å] | Rz [Å] |
|----|--------|--------|
| 1  | 1.13   | 6.92   |
| 13 | 1.16   | 6.62   |

Surface topography



#### Roughness: Layer / Water solution

| рН               | Ra [Å] | Rz [Å] |
|------------------|--------|--------|
| Before corrosion | 1.18   | 7.82   |
| 1                | 1.54   | 8.26   |
| 13               | 1.47   | 7.79   |



### AI / AI oxide corrosion - concentration profiles



• T=363K t=1ns



| рН               | H [% mol] | O [% mol] | Al [% mol] |
|------------------|-----------|-----------|------------|
| Before corrosion | 0.0       | 38.6      | 61.4       |
| 1                | 1.9       | 32.3      | 65.8       |
| 13               | 7.1       | 34.6      | 58.2       |

M. E. Trybula , A. Żydek, P. Korzhavyi, J. Wojewoda-Budka, J. Phys. Chem. C 2023



### AI / AI oxide corrosion - Voronoi analysis



• T=363K t=1ns



Thin Layer



### Conclusions



• Oxygen density is crucial during the thermal oxidation of AI, increasing the oxygen density accelerated the

oxidation process significantly.

- Low adsorption energy of benzotriazole to the substrate with AI oxide, agreement of DFT results with ReaxFF-MD
- Different corrosion mechanisms depending on the pH of the solution used
- The oxide layer reduces the corrosion process of the AI substrate

### Research in progress



- Continuation of MD simulations corrosion for AI and AI-Mg alloys with deposited coatings (benzotriazole) in water solution
- Continuation of DFT calculations of adsorption energy of deposited coatings on AI and AI-Mg substrates
- Experimental corrosion tests for AI and AI-Mg alloys with applied protective coatings

# Thank you for your attention





