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Variable transformation
(revisited)

Let y be a function of a random variable y = a(x) (or variables) which itself is a
random variable.
x is distributed according to p.d.f. f(x) How do we find g(y), the p.d.f. of y?

∆P =

∫
x′∈{x,x+∆x}

f(x′)dx′ =

∫
y′∈{a(x),a(x+∆x)}

g(y′)dy′ (1)

Irregardles of the sign of the derivative we have:

∆x → 0 ⇒ f(x)|dx| = g(y)|dy|

g(y) = f(x(y))

∣∣∣∣dxdy
∣∣∣∣ = f(x(y))|a′(x))|−1

where x(y) ≡ a−1(y).

(2)

If a not single-valued, contributions must be added:

g(y) =
∑
i

f(x(y))i

∣∣∣∣dxdy
∣∣∣∣
i

=
∑
i

f(x(y))i|a′(xi))|−1

(3)
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Variable transformation
(revisited)

In a more general case of multidimensional joint p.d.f. one can define a
one-to-one (invertable) transformation. We have:

g(y1, ..., yn) = f(x1, ...., xn) |J | (4)

where J ≡ det

 ∂x1

∂y1
... ...

... ... ...

... ... ∂xn

∂yn

 ,

xi(y1, ..., yn) ≡ a−1
i (y1, ..., yn).
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The Monte Carlo method
Cumulative function & uniform distribution [0, 1]

Let y be the cumulative of an arbitray p.d.f. f(x):

y = F (x) =

∫ x

−∞
f(x′)dx′ (5)

g(y), the p.d.f. of y is given by the transformation:

g(y) = f(x(y))

∣∣∣∣ 1

F ′(x)

∣∣∣∣ = f(x(y))
1

f(x(y))
=

{
1 for y ∈ (0, 1)
0 otherwise

(6)

For any continuous p.d.f. f(x), y = F (x) is distributed according to [0, 1].
Hence, p.d.f. of x = F−1(y) will be f(x) if y has a uniform distribution [0, 1].

f(x; 0, 1) (or simply [0, 1]) is commonly used in statistics as the base for
random number generators.
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The Monte Carlo method
Generating the uniform distribution [0, 1]

In order to generate random variables according to an arbitrary p.d.f. one
needs the [0, 1] to start with.

This task is usually acomplished by a random number generator algorithm.
More specifically, computers can generate pseudorandom numbers (e.g.
RANMAR, RANLUX from CernLib or numpy.random.random() in Python).

Pseudorandom sequence behaves has a feel & touch of randomness, but
given the initial seed remains entirely deterministic. It also has a cycle period
(the longer the better, of course).

There are various algorithms on the market. A common simple
implementation generates the sequence n1, n2, ... according to:

ni+1 = (a× ni) mod m.

The multiplier a and the modulus m are constants that determine the
sequence, in particular its period (e.g. a = 40692 and m = 2147483399 were
used on 32-bit machines giving the period of ≈ 2× 109).

Much better, more spohisticated algorithms are routinely used nowadays.
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The Monte Carlo method
Using transformation for random number generation

If the Eq. 5 can be solved for x (x = F−1(y)) the transformation offers the
most effective (efficient) way to generate random numbers.

A simple example comes from the exponential decay:

y = F (x) =

∫ x(y)

0

1

τ
e−x′/τdx′ =⇒ x(y) = −τ log(1− y) (7)
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The Monte Carlo method
Using transformation for random number generation

If the Eq. 5 can be solved for x (x = F−1(y)) the transformation offers the
most effective (efficient) way to generate random numbers.

Numerically, it can also be done for a Gaussian:

y = F (x) =

∫ x(y)

−∞
G(x′;µ, σ)dx′ =⇒ x(y) =

√
2σ erf−1(2y − 1) + µ

(8)
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The Monte Carlo method
Acceptance-rejection for random number generation

In more complex cases the acceptance-rejection method proves handy (also
generally less efficient).
1) Generate pairs of random numbers satisfying: x = xmin + r1(xmax − xmin),
u = r2fmax.

2) If u < f(x), then accept, otherwise reject.
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Applications of the Monte Carlo method

Various tests of estimators (we have seen multiple examples).

Numerical integration. The accuracy improves as 1/
√
N . Numerical

integration using trapezoidal rule follows 1/N2/d where d is the domain
dimension. In 1D it is much faster but for d > 4 Monte Carlo comes into the
game!

Determination of p.d.f. of a function of random variables in more general
case when y(x1, ..., xn) when p.d.f.’s of xi are known.

More advanced examples come e.g. from particle physics when experimental
data are simulated using event generators and subsequently detector
simulation programs. In both cases randomness of the physics process is the
paramount requirement.
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From measured to true distributions
Unfolding - general concepts

In experimental physics (more generally, science) we usually take measurement
and compare them to some theoretical models. What we observe (measure) in an
experiment is never perfect. There are two basic ways around this problem:

1 Generate Monte Carlo events according to our model and add all
experimental effects using simulation. Then, we can compare experimental
data directly to the Monte Carlo prediction,

2 Given the observed data construct estimator for the underlying true
distribution - called unfolding.

The first option is usually easier, but does not allow for comparison outside of the
experimental context (e.g. at a later time) and does not allow for direct
comparison or combination of different experiments. Unfolding, although more
involved, gives considerably larger flexibility of interpretation.
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From measured to true distributions
Unfolding - general concepts

Let us take a measurement of a spectrum with some features corresponding to
measured properties (resonances). We have various experimental effects which
impact the observed spectrum:

resolution, which causes migration between bins: the distribution is “smeared
out”, peaks broadened,

efficiency, which causes some events go undetected,

background, which causes extra events due to spurious processes.

fmeas(x) =

∫
R(x|y)ftrue(y)dy (9)

Here we consider histogrammed (discretized) data n = (n1, ..., nN )

νi = E[ni] =

M∑
j=1

Rijµj + βi, µj = µtot

∫
binj

ftrue(y)dy︸ ︷︷ ︸
pj

, i = 1, ..., N
(10)
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From measured to true distributions
Unfolding - general concepts

Rij = P (observed in bin i | true in bin j) . (11)

Note that:
N∑
i=1

Rij = εj ←− efficiency (12)

“true” distribution histogram “observed” events histogrammed
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From measured to true distributions
Unfolding - general concepts

In the following we shall assume no background or known background
contribution which can be subtracted prior to unfolding.
We have:

ν = Rµ+β (13)

And assume it can be solved (inverted):

µ = R−1ν (14)

Suppose data are independent Poisson:

P (ni; νi) =
νni
i

ni!
e−νi =⇒ logL(µ) =

N∑
i=1

(ni ln νi − νi) =⇒ ν̂ = n

−→ µ̂ = R−1n

(15)
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From measured to true distributions
Unfolding - putting it to work

Let us take a finite Gaussian resolution (σ = 0.6) and an efficiency which linearly
grows from 0.5 at 0 to 1 at 10.

“smeared” distribution histogram

νi =

M∑
j=1

Rijµj

“unfolded” histogram

µ̂i =

M∑
j=1

R−1
ij νj
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From measured to true distributions
Unfolding - covariance matrix

For Poisson data the ML estimators are unbiased:

E[µ̂] = R−1E[n] = µ (16)

What is the covariance matrix of the unfolded histogram (µ̂)?

Uij = cov[µ̂i, µ̂j ] =

N∑
k,l=1

(R−1)ik(R
−1)jl cov[nk, nl]

or in short: U = R−1V (R−1)T

(17)

Recall the RCF bound:

(U−1)kl = −E
[
∂2 logL

∂µkµl

]
=

N∑
i=1

RikRil

νi

=⇒ Uij =

N∑
k,l=1

(R−1)ik(R
−1)jkνk, (cov[nk, nl] = δklνk︸ ︷︷ ︸

independent Poisson

).

(18)

Unfolding realises the minimal variance among all unbiased estimators!
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From measured to true distributions
Unfolding - real life

Take the same Gaussian resolution (σ = 0.6) and an efficiency which linearly
grows from 0.5 at 0 to 1 at 10 and generate 10,000 random events:

real data histogram

Now, apply the same unfolding −→

unfolded data histogram

µ̂i =
M∑
j=1

R−1
ij nj

Huston, we have a problem! /
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From measured to true distributions
What has happened?

1 The perfect “unfolding” for the ν is assured by construction.

2 Data n seem very close but...
there are Poisson fluctuations w.r.t. expectation ν.

3 Smearing is larger than the width of one bin. Information about fine
structure at this level is lost. This corresponds to the fact that solutions
corresponding to the hightest “frequency” modes are ill-defined.

4 Mathematically, such modes have very small singular values.
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From measured to true distributions
The singular vectors (modes):
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From measured to true distributions
Linear algebra - reminder

MX = Y =⇒ X =M−1Y (19)

AssumingM a square matrix we can perform Singular Value Decomposition
(SVD):

M = STDV (20)

SMV T︸ ︷︷ ︸
D

VX︸︷︷︸
X̃

= SY︸︷︷︸
Ỹ

=⇒ X̃ = D−1Ỹ , (21)

where D is a diagonal matrix with singular values λi on the diagonal and S (V ) is
a orthonormal matrix with eigenvectors Si (Vi) as rows.

D

 λ1 ... 0
... ... ...
0 ... λN

 , U ∝
∑
i

1

λ2
i

(22)
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From measured to true distributions
Correction factors

By far, the simplest method of correcting distributions is by applying correction
factors.

µ̂i = Cini, with Ci =
µMC
i

νMC
i

←− from MC. (23)

Uij = cov[µ̂i, µ̂j ] = CiCj cov[ni, nj ] = δijC
2
i ni ←− small!. (24)

We get a seamingly ideal response!

but...

applying correction factors
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From measured to true distributions
Correction factors

Now, real peaks have been shifted by one left.
This method is NOT unbiased. We actually have:

bi = E[µ̂i]− µi −→ bi =

(
µMC
i

νMC
i

− µi

νi

)
(25)

When reality is different from the assumed
model, we get it completely wrong /

In other words, correction factor method
works ONLY if we are sure of the model!
In particular:

bad if we don’t know the exact shape
of the signal.

good if we want to correct for the
known inefficiency.

applying correction factors
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From measured to true distributions
Unfolding - with conditioning

We execute the same unfolding but using the R−1 matrix with suppressed weak
modes. This can be done in various ways. Here a very simple conditioning of the
R is used, just to demonstrate the principle.

unfolded with conditioned R−1

Bias can be assessed
from unfolding ν −→

That’s way better! ,

same applied to ν
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Regularized unfolding

The problem of unfolding are typically large uncertainties on “high frequency”
modes which are unphysical and are driven by the statistical fluctuations.

Regularisation: maximize the following with respect to µ:

Φ(µ) = α logL(µ) + S(µ) (26)

S(µ) regularization function (measure of smoothness),
α regularization parameter (tradeoff between logL and S).

In addition require
∑N

i νi =
∑

i,j Rijµj = ntot, i.e. maximize:

ϕ(µ, λ) = α logL(µ) + S(µ) + λ

[
ntot −

N∑
i

νi

]
, (27)

where λ is a Lagrange multiplier: ∂ϕ
∂λ = 0⇒

∑N
i νi = ntot.
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Regularized unfolding
One needs: a) regularization function S(µ), b) a prescription for choosing α.

1 Tikhonov regularization:

S[ftrue(y)] = −
∫ (

dkftrue(y)

dyk

)2

, where k = 1, 2, .. (28)

E.g. for k = 2 and logL = − 1
2χ

2 one gets:

ϕ(µ, λ) = −α

2
χ2(µ)−

N−1∑
i=2

(−µi−1 + 2µi − µi+1)
2, (29)

which after setting derivatives equal zero, gives a system of linear equations
solvable using e.g. SVD.

2 Entropy: H = −
∑N

i=1 pi ln pi (max when all pi equal).
Use entropy-based regularization function:

S(µ) = H(µ) = −
N∑
i=1

µi

µtot
ln

µi

µtot
, (30)

∝ ln(number of ways to arrange µtot entries in M bins)
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From measured to true distributions
Unfolding - image unblure

The entropy-based
unfolding of a blured
image.

credit: G. Cowan
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Regularized unfolding
Choosing α parameter

One needs a trade-off between bias and variance:
Common choices include:

1

MSE =
1

N

N∑
i=1

(Uii + b̂2i ), or MSE’ =
1

N

N∑
i=1

Uii + b̂2i
µ̂i

.

2 Allow for a “reasonable” change of the χ2:

∆χ2 = 2∆ logL = N

3 Require bias be consistent with zero within its uncertainty:

χ2
b =

N∑
i=1

b̂2i
Wii

= N, where Wij = cov[b̂i, b̂j ].

Note: there is no optimal choice. All depends on the particular analysis context.
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Thank you
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Back-up
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