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Question from the previous lecture

Consider the exponential p.d.f.,

f(x; τ) =
1

τ
e−x/τ , x ≥ 0.

1 Show that the corresponding cumulative distribution is given by

F (x; τ) = 1− e−x/τ

2 Show that the conditional probability to find a value x < x0 + x′ given that
x > x0 is equal to the (unconditional) probability to find x less than x′, i.e.

P (x < x0 + x′|x ≥ x0) = P (x ≤ x′).

Solution to be sent to me before the next lecture
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Solution

1 We find the cumulative function by a simple
integration:

F (x; τ) =

∫ x

0

1

τ
e−y/τdy =

∣∣∣∣x
0

−τ

τ
e−y/τ = 1− e−x/τ

2 For the second part, we use the definition of the conditional probability:

P (x < x0 + x′|x ≥ x0) =
P (x0 ≤ x < x0 + x′)

P (x ≥ x0)

=
F (x0 − x′)− F (x0)

1− F (x0)
=

1− e−(x0+x′)/τ − 1 + e−x0/τ

1− 1 + e−x0/τ

=1− e−x′/τ = P (x ≤ x′) ∴

No matter where you start your observation the (properly normalised) remainder of the
exponent looks the same!
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Statistical tests
elementary notions

Goal: make a statement about how well the observed data stand in agreement
with predicted p.d.f.’s, i.e. a hypothesis.

Hypothesis under test is called the null hypothesis, H0.

Hypothesis which uniquely determines the f(x) is called simple

otherwise, when free parameters are involved, f(x; θ) is called composite.

Statement on hypothesis validity often involves alternative hypotheses,
H1, H2....

For x = (x1, x2, ..., xn), the joint p.d.f. for a hypothesis H is given by the
conditional probability: f(x|H).

We define a test statistic t(x) (can be multi-dimensional) which, in turn, is
characterised by its p.d.f.’s: g(t|H).
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Statistical tests
simple hypotheses

acceptance region:
t < tcut,

critical region: t > tcut,

error of the first kind:

α =

∫ ∞

tcut

g(t|H0)dt,

error of the second kind:

β =

∫ tcut

−∞
g(t|H1)dt,

α is also known as significance level of the test.

1− β is called the power of the test.

ε = 1− α is the efficiency of the test.

If N0 and N1 denote total yields of the two hypotheses (signal/background)
purity is given as εN0

εN0+βN1
.
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Neyman-Pearson lemma

For a scalar t, the relationship between efficiency and purity is uniquely
determined.
However, if t = (t1, t2, ..., tn) optimal choice of the multidimensional acceptance
region is not straightforward.

Likelihood ratio
The Neyman-Pearson lemmaa states that the acceptance region giving
the highest power (highest purity) for a given efficiency is the region of
t-space such that:

r =
g(t|H0)

g(t|H1)
> c. (1)

The ratio r is known as the likelihood ratio.

aWe shall leave it without a proof.
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Linear test statistic
Fisher discriminant

t(x) =

n∑
i=1

aixi = aTx (2)

We can express the mean and the variance for t under a hypothesis (k = 0, 1):

Ek[t] =

∫
tg(t|Hk)dt = aTEk[x], (3)

Vk[t] =

∫
(t− Ek[t])

2g(t|Hk)dt = aTVk[x] a. (4)

The coeficients a of the Fisher discriminant are obtained by maximising the
expression:

J(a) =
(E0[t]− E1[t])

2

V0[t] + V1[t]
, (5)

which leads to:

a ∝ (V0[x] + V1[x])
−1(E0[x]− E1[x]). (6)

The Fisher’s linear discriminant function is given by just the mean and
covariance of the data x, but without knowledge of the actual joint p.d.f.’s
(f(x|H0) and f(x|H1)).
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Fisher discriminant
at work...

E0[X0] = E0[X1] = 0.5,
E1[X0] = E1[X1] = −0.5,
σ0 = σ1 = 1, V0,1 = −0.8

E0 =

(
0.5
0.5

)
, E1 =

(
−0.5
−0.5

)

V0 = V1 =

(
1 −0.8

−0.8 1

)
(V0 + V1)

−1 =

(
2

1.44
1.6
1.44

1.6
1.44

2
1.44

)
a ∝ (V0 + V1)

−1(E0 − E1) =

(
3.6
1.44
3.6
1.44

)

t(X) = aTX = X0 +X1
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Fisher discriminant
properties

For 1-D case, the Fisher discriminant is trivially given by the x itself.

For a special case when f(x|H0) and f(x|H1) are both multi-dimensional
Gaussians with common covariance matrix (V0 = V1 = V ):

t(x) = a0 + (µ0 − µ1)
TV −1x,

the likelihood ratio becomes a monotonic function of t:
r = exp[− 1

2 (x − µ0)
TV −1(x − µ0) +

1
2 (x − µ1)

TV −1(x − µ1)] ∝ exp[(µ0 − µ1)
TV −1x]

r ∝ et (t = ln(r) + const.)

This means that the Fisher discriminant is just as good as the likelihood ratio.

Posterior probability of H0 takes a particularly simple form:

P (H0|x) =
f(x|H0)P0

f(x|H0)P0 + f(x|H1)P1
=

1

1 + P1

P0r

=
1

1 + e−t
≡ s(t) (7)

s is a logistic sigmoid.

a0 = − 1
2E0[x]

TV −1E0[x] +
1
2E1[x]

TV −1E1[x] + ln
(

P0
P1

)
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Non-linear test statistics
artificial neural networks

If the distributions ̸=Gaussian or covariances are
different, Fisher discriminant is not optimal any
longer. Let us take:

t(x) = s

(
a0 +

n∑
i=1

aixi

)
, (8)

where s called the activation function is an
arbitrary monotonic function (e.g. the logistic
sigmoid). Such a test statistic is called a
single-layer perceptron. The vector of inputs
represents a set of nodes called the input layer
while the test statistic t(x) is called the output
node (can be more than one if t is a vector).
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Non-linear test statistics
artificial neural networks

An arbitrary number of hidden layers containing
any number of nodes can be combined into a
feed-forward network:

hk+1
i (x) = s

(
wk

0 +

n∑
i=1

wk
i h

k
i (x)

)
. (9)

The network is parameterised by the weights wk
i attributed to each connection.

Optimization of weights is based on minimisation of an error function, such as:

∆ = E0[(t− t(0))2] + E1[(t− t(1))2], (10)

in analogy to sum of variances minimized for the Fisher discriminant. The
optimization is typically achieved by means of training.
A popular method is e.g. the error back-propagation.

Learn all about neural networks and other MVA methods from the lecture series
by Marcin Wolter.
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Goodness-of-fit
Goodness-of-fit is used to assess the compatibility with the model without
resorting to any alternative ones.

Recall tossing a coin. N trials results in nh heads and nt = N − nh tails. Let us
take N = 20 and nh = 17. How is this result compatible with the “fair coin”
hypothesis?

P (nh;N) =
N !

nh!(N − nh)!

(
1

2

)n ( 1

2

)N−n

, E[nh] = 10

The P -value is the probability, under the assumption of H0, of obtaining a result
as compatible or less with H0 than the actually observed.
In our example this means sum of probabilities for nh = 0, 1, 2, 3, 17, 18, 19, 20
and yields P (nh|H0) = 0.0026.
This is NOT the probability of H0 to be true! All we have assessed here is
P (nh|H0) which, in the frequentist approach, gives the fraction of times one
would obtain a result as compatible with H0 or less so if the identical experint
(20 tosses of a fair coin) was repeated many times.
Probability of H0 under the observation (P (H0|nh)) requires the prior probability
for H0 - the probability that the coin is fair before having seen the outcome of the
experiment, as well as for the alternative hypotheses - recall the Bayes theorem.
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Significance of the signal
In a counting experiment, we expect νb background events and νs signal ones.
The total number of events observed, n = nb + ns, is therefore a Poisson variable
with mean ν = νb + νs. The probability to observe n events is:

f(n; νs, νb) =
(νs + νb)

n

n!
e−(νs+νb). (11)

In an experiment we observed nobs events. We can quantify the confidence of
observation of the signal (νs ̸= 0) by computing likelihood of the outcome under
the background-only hypothesis:

P (n ≥ nobs) =

∞∑
n=nobs

f(n; νs = 0, νb) = 1 −
nobs−1∑

n=0

f(n; νs = 0, νb) = 1 −
nobs−1∑

n=0

νn
b

n!
e
−νb . (12)

E.g, if we expect νb = 0.5 background events and have observed nobs = 5, the
P -value is 1.7× 10−4.
Note: this is NOT probability of νs = 0!
It is tempting to say “we observed 5±

√
5 which is only two standard deviations

from the expected 0.5 background events”. This would lead us to a wrong
conclusion that we are compatible with the background at 5% level.
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Significance of the signal
set a @95% confidence level (CL)

In a counting experiment, we expect νb background events and νs signal ones.
The total number of events observed, n = nb + ns, is therefore a Poisson variable
with mean ν = νb + νs. The probability to observe n events is:

f(n; νs, νb) =
(νs + νb)

n

n!
e−(νs+νb). (13)

We expect νb = 0.5 background events and have observed nobs = 5.
What statements can be made about the signal, then?

1 We can put an upper limit on the yield of the signal:
nsignal < 10 @95% CL. P (n ≤ 5) =

∑5
n=0 f(n; νs = 10, νb = 0.5) = 0.05

2 We can put a lower limit on the yield of the signal:
nsignal > 1.5 @95% CL. P (n ≥ 5) =

∑∞
n=5 f(n; νs = 1.5, νb = 0.5) = 0.05

Note: We get all different results depending on the question asked!
In statistics it is essential (and sometimes difficult) to adequately formulate the
problem.
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Pearson’s χ2 test

Let us consider a continuous random variable x
resulting from an experiment. How can we make
a statement about compatibility with
background-only hypothesis? Or claim
observation of signal on top of the background?

Usual procedure is to histogram observed data n = (n1, ..., nN ) and construct the
Pearson’s χ2 statistic:

χ2 =

N∑
i=1

(ni − νi)
2

νi
, note : νi = (

√
νi)

2 = σ2 (14)

where νi is the expected number of entries under the assumed hypothesis
(model). If number of events in a bin is not too small the statistic will follow a χ2

distribution for N DoF’s. This holds regardless of the distribution of x. χ2 test is
said to be distribution free.
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Pearson’s χ2 test

The P -value is obtained from the integral of the χ2 distribution from the observed
value to infinity:

P =

∫ ∞

χ2

fχ2(x,NDoF)dx (15)

Note: Expectation value is NDoF, so χ2/NDoF should be distributed around unity
with mean 1. This quantity is often quoted as a measure of goodness-of-fit.
However, it has to be kept in mind that the resulting P -value depends on NDoF,
not only the ratio:

χ2 = 15, NDoF = 10 =⇒ P = 0.13 while χ2 = 150, NDoF = 100 =⇒ P = 9×10−4

If the normalisation is known, i.e.
∑

ni =
∑

νi in Eq. 14, the test statistic
follows χ2 distribution with NDoF = N − 1. More generally, if m parameters of
the model are estimated from data, the χ2 statistic will obey NDoF = N −m.

In our example: χ2 = 76.6, NDoF = 19, which gives P−value = 7× 10−9.
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Pearson’s χ2 test
validity of χ2 statistic (10 events)

Let us inspect the residual pull ((ni − νi)/
√
νi)

dependence on the event number as well as
compare the actual statistic distribution from
Monte Carlo toy generation to the predicted χ2

shape.
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Pearson’s χ2 test
validity of χ2 statistic (30 events)

Let us inspect the residual pull ((ni − νi)/
√
νi)

dependence on the event number as well as
compare the actual statistic distribution from
Monte Carlo toy generation to the predicted χ2

shape.
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Pearson’s χ2 test
validity of χ2 statistic (100 events)

Let us inspect the residual pull ((ni − νi)/
√
νi)

dependence on the event number as well as
compare the actual statistic distribution from
Monte Carlo toy generation to the predicted χ2

shape.
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Pearson’s χ2 test
validity of χ2 statistic (1000 events)

Let us inspect the residual pull ((ni − νi)/
√
νi)

dependence on the event number as well as
compare the actual statistic distribution from
Monte Carlo toy generation to the predicted χ2

shape.
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Parameter estimation
General concepts

A sample of n independent observations from the sample space x described by
the p.d.f. f(x) is described by the joint p.d.f. given by:

fsample = f(x1)f(x2)...f(xn) (16)

Let us consider n measurements of x whose p.d.f. is not known.
The central problem of statistics is to infer properties of f(x) based on finite
number of observations x1, ...xn.

Often, the hypotesis for p.d.f. f(x;θ) depends on unknown parameters
θ = (θ1, ...θm).

A function of x = (x1, ...xn) free of unkown parameters is called a statistic.

Statistic used to estimate a property of p.d.f. is called an estimator.
An estimator for θ will be denoted θ̂.
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Estimator
basic properties

If for any ϵ > 0: limn→∞ P (|θ̂ − θ| > ϵ) = 0 the setimator is consistent.

The procedure of estimating a parameter’s value given the data x is called
parameter fitting.

The estimator θ̂(x) is itself a random variable with p.d.f. g(θ̂; θ)

The p.d.f. of a statistic is called a sampling distribution.

Expectation value of an estimator θ̂:

E[θ̂(x)] =

∫
θ̂g(θ̂; θ)dθ̂ =

∫
...

∫
θ̂(x)f(x1; θ)...f(xn; θ)dx1...dxn (17)

Bias of an estimator: b = E[θ̂(x)]− θ.
Note: Bias does not depend on a specific sample but rather on f(x), the
estimator and sample size.
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Estimator
basic properties

An estimator for which b = 0 independently on the sample size is said
unbiased.

Note: A consistent estimator can be biased.

For obvious reasons unbiased estimators are preferred.

A useful measure of the quality of an estimator is mean squared error
(MSE):

MSE = E[(θ̂ − θ)2] = E[(θ̂ − E[θ̂])2] + (E[θ̂ − θ])2 = V [θ̂] + b2, (18)

Show the above. Recall, θ is the true value (const.!)

which can be interpreted as the squared sum of statistical and systematic
errors (adding statistical and systematic uncertainties in quadrature).
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Estimators
mean, variance and covariance

An estimator for the expectation value:

x̄ =
1

n

n∑
i=1

xi (19)

An estimator for the variance:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 =
n

n− 1
(x̄2 − x̄2) (20)

Note: If the true mean µ is known then:

S2 =
1

n

n∑
i=1

(xi − µ)2 = x̄2 − µ2 (21)

An estimator for the covariance:

V̂xy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =
n

n− 1
(x̄y − x̄ȳ) (22)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 0 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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Bayessian fit
How to interpret what’s on the plots...

1 The rightmost plots show the considered data points plus the probability contour to
find the fitted line in the (x, y) plane.

2 The leftmost plots show the 2D p.d.f. contours in the (p1, p0) plane corresponding
to a single measurement. As y = p0 + p1x we get: p0 = y − xp1. So ignoring the
error, a single (x,y) point corresponds to a straight line in the (p1, p0) plane. When
the Gaussian uncertainty on the y measurement is taken into account, this
translates into a band with a Gaussian cross-section.

3 The middle plots show our current best knowledge about p0 and p1 as the (p1, p)0)
contour after all previous measurements have been considered. First slide shows
just our assumed PRIOR (0.0± 0.5 for both parameters). The following show how
our knowledge about the two parameters builds up POSTERIOR.

P ((p0, p1)|meask) ∝ P (meask|(p0, p1))P ((p0, p1))

In order to add subsequent measurement, one simply multiplies the p.d.f. coming from
the measurement (left surface) by the current p.d.f. for the fitted line parameters
(middle surface). This is done point-by-point over the 2D surface. Finally, one needs to
take care of proper POSTERIOR normalisation.
NOTE: The black point in left and middle plots indicates the value of the true p0 and p1
parameters (−0.2, 0.5). It is added there to guide your eye and show that the fit
converges to the actual parameters.
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 1 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 2 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 3 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 4 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 5 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.1

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 9 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.3

A measurement provides a 2D p.d.f.: f(p0, p1) = G(µ = p0 + p1xi − yi, σ)

Measurements are randomly chosen from the range (−1, 1).

We start with a vague Gaussian prior: p0pri = 0.0± 0.5, p1pri = 0.0± 0.5.

Posterior is a product of the prior and measuremnt 2D p.d.f.’s.

MEASUREMENT no 9 f(p0, p1) PRIOR/POSTERIOR f(p0, p1) FIT RESULT (x, y)
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When the p.d.f. is known...
Bayesian iterations...

We want to estimate parameters p0, p1 of a straight line, y = p0 + p1x, from the
measurements (xi, yi) where xi is assumed acurately known and yi bares a
Gaussian uncertainty with a known standard deviation σ.

The true values are p0 = −0.2, p1 = 0.5, σ = 0.3
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Maximum Likelihood estimator
Let f(x; θ) is a p.d.f. of a known form but unknown parameter θ (more generally
θ = (θ1, ...θm)). Let x1, x2, ..., xn be a sample of n events drawn from the above
p.d.f. Generally, xi may be a multidimensional vector. We define:

L(θ) =

n∏
i=1

f(xi; θ) (23)

called the likelihood function.

L is technically a joint p.d.f. of x but, assuming a fixed data sample,
represents a function of θ.

The maximum likelihood (ML) estimator θ̂ is given by:

∂L

∂θi
= 0, i = 1, ...,m. (24)

Log-likelihood function is commonly used:

logL(θ) =

n∑
i=1

ln f(xi; θ) (25)
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Maximum Likelihood estimator
lifetime example

An experiment measures n decays of the same particle (or follows the lifespan of n
limousines) which are drawn from the exponential p.d.f.:

f(x; τ) =
1

τ
e−x/τ (26)

The ML estimator τ̂ is given by:

logL(τ) =

n∑
i=1

(
ln

1

τ
− x

τ

)
∂logL

∂τ
= 0 =⇒ τ̂ =

1

n

n∑
i=1

xi (27)

and its expectation value is:

E[τ̂ ] =

∫
...

∫ (
1

n

n∑
i=1

xi

)
1

τ
e−x1/τ ...e−xn/τdx1...dxn = τ (28)

τ̂ is an unbiased estimator!
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Example of ML lifetime estimator
Example of 100 Monte Carlo generated observations of an exponential random
variable x with mean τ = 5.

The fitted ML τ̂ = 4.63 while the τ̄ = 4.58.
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Example of ML lifetime estimator
Example of 100 Monte Carlo generated observations of an exponential random
variable x with mean τ = 20.

The fitted ML τ̂ = 20.46 while the τ̄ = 11.46. ! why?
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Maximum Likelihood estimator
Gaussian distribution

An experiment performs n measurements of the Gaussian-distributed random
variable x with unknown µ and σ2. The log-likelihood function is:

logL(µ, σ2) =

n∑
i=1

(
ln

1

2π
+

1

2
ln

1

σ2
− (xi − µ)2

2σ2

)
(29)

∂logL

∂µ
= 0 =⇒ µ̂ =

1

n

n∑
i=1

xi,
∂logL

∂σ2
= 0 =⇒ σ̂2 =

1

n

n∑
i=1

(xi − µ̂)2. (30)

E[µ̂] = µ, so µ̂ is an unbiased estimator.

E[σ̂2] = n−1
n σ2, so σ̂2 is biased. Nonetheless, it is still a consistent estimator.

(Recall: s2 is an unbiased estimator of σ2.)
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Variance of ML estimator
Central question of the parameter estimation: What is the uncertainty (variance)
of our estimate? Let’s take the exponential decay example for which ML estimator
is τ̂ = 1

n

∑n
i=1 xi. For independent xi, xj (Vij = 0) we have:

V [τ̂ ] = E

( 1

n

n∑
i=1

xi

)2
−

(
E

[
1

n

n∑
i=1

xi

])2

=
τ2

n
(31)

In practice, reported is rather τ̂2

n .

Indeed, let us check it using toy
Monte Carlo approach using our
exponential decay example.

τ = σ = 5

We take 1000 toy each performing a
ML fit with 100 events.

We expect στ̂ = σ/
√
100 = 0.5.
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Variance of ML estimator
Central question of the parameter estimation: What is the uncertainty (variance)
of our estimate? Let’s take the exponential decay example for which ML estimator
is τ̂ = 1

n

∑n
i=1 xi.

V [τ̂ ] = E

( 1

n

n∑
i=1

xi

)2
−

(
E

[
1

n

n∑
i=1

xi

])2

=
τ2

n
(32)

In practice, reported is rather τ̂2

n .

Indeed, let us check it using toy
Monte Carlo approach using our
exponential decay example.

τ = σ = 5

We take 1000 toy each performing a
ML fit with 400 events.

We expect στ̂ = σ/
√
400 = 0.25.
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Variance of ML estimator
Central question of the parameter estimation: What is the uncertainty (variance)
of our estimate? Let’s take the exponential decay example for which ML estimator
is τ̂ = 1

n

∑n
i=1 xi.

V [τ̂ ] = E

( 1

n

n∑
i=1

xi

)2
−

(
E

[
1

n

n∑
i=1

xi

])2

=
τ2

n
(33)

In practice, reported is rather τ̂2

n .

Indeed, let us check it using toy
Monte Carlo approach using our
exponential decay example.

τ = σ = 5

We take 1000 toy each performing a
ML fit with 900 events.

We expect στ̂ = σ/
√
900 = 0.16(6).
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Variance of the mean
For independent xi, xj (Vij = 0) we have:

V [τ̂ ] = E[τ̂
2
] − (E[τ̂ ])

2
= E

[(
1

n

n∑
i=1

xi

)2]
−
(
E

[
1

n

n∑
i=1

xi

])2

=

1

n2

∫
...

∫  n∑
i=1

x
2
i +

n∑
i̸=j

xixj

 1

τ
e
−x1/τ

...
1

τ
e
−xn/τ

dx1...dxn − τ
2
=

=
1

n2

(
2nτ

2
+ n(n − 1)τ

2
)
− τ

2
=

τ2

n
. (34)

More generally:

V [x̄] = E[x̄
2
] − (E[x̄])

2
= E

[(
1

n

n∑
i=1

xi

)2]
−
(
E

[
1

n

n∑
i=1

xi

])2

=

=
1

n2

 n∑
i=1

E[x
2
i ] +

n∑
i̸=j

E[xixj ]

− E[xi]
2
=

=
1

n2

(
nV [xi] + nE[xi]

2
+ n(n − 1)E[xi]

2
)
− E[xi]

2
=

V [xi]

n
, (35)

where in both cases we used: V [xi] = E[x2
i ] − E[xi]

2 ⇒ E[x2
i ] = V [xi] + E[xi]

2,

Vij = E[xixj ] − E[xi]E[xj ] so Vij
i̸=j
= 0 ⇒ E[xixj ] = E[xi]E[xj ].
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Questions

Suppose a beam of particles is known to consist of charged pions and muons. For each
particle in the beam we measure a variable t, whose distribution for pions (π) and muons
(µ) is

f(t;π) =
1√
2πσ

e−(t−µπ)2/2σ2

, f(t;µ) =
1√
2πσ

e−(t−µµ)2/2σ2

,

where µπ = 0, µµ = 2 and σ = 1. For each particle we want to test the hypothesis H0

that it is a pion against the alternative H1 that it is a muon. The critical region of the
test is given by t > tc where tc is a given constant.

1 Suppose we want the significance of the test to be α = 0.05. Illustrate where the
critical region lies and what α means on a sketch of the p.d.f.s f(t|π) and f(t|µ)
and show that tc is numerically about 1.64.

2 Suppose a sample of particles is known to consist of 99% pions and 1% muons.
What is the purity of the muon sample selected by t > tc? Here, purity means the
probability to be a muon given that the particle had t > tc (i.e., it was rejected as a
pion and thus selected as a muon candidate).

Solutions to be sent to me before the next lecture
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Thank you
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Back-up
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Expectation value for the variance estimators s2 and S2

E[s2] =
1

n− 1

∑
i

E[(xi − x̄)2] =
1

n− 1

∑
i

E[x2
i − 2xix̄+ x̄2] =

=
1

n− 1

∑
i

(
E[x2

i ]−
2

n
E

[
xi

∑
j

xj

]
+

1

n2
E

[∑
k

xk

∑
j

xj

])
=

=
1

n− 1

∑
i

E[x2
i ]−

2

n

∑
j

E[xixj ] +
1

n2

∑
k,j

E[xkxj ]

 =

=∗ 1

n− 1

∑
i

(
µ2 + σ2 − 2

n
(µ2 + σ2 + (n− 1)µ2) +

1

n2

[
(n2 − n)µ2 + n(µ2 + σ2)

])
=

=
1

n− 1

∑
i

(
0× µ2 +

n− 1

n
σ2

)
=

1

n− 1
n
n− 1

n
σ2 = σ2, 2 (36)

E[S2] =
1

n

∑
i

E[(xi − µ)2] =
1

n

∑
i

E[x2
i − 2xiµ+ µ2] =∗ 1

n

∑
i

(
µ2 + σ2 − 2µ2 + µ2) =

=
1

n
nσ2 = σ2, 2 * by virtue of identities used in (38). (37)
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Estimators
mean, variance and covariance

Given the estimator θ̂, one can compute its variance V [θ̂] = E[θ̂2]− (E[θ̂])2,
which gives a measure of the uncertainty.

Most commonly used is the variance of the sample mean x̄:

V [x̄] = E[x̄2]− (E[x̄])2 = E

( 1

n

n∑
i=1

xi

) 1

n

n∑
j=1

xj

− µ2 =

=
1

n2

n∑
i,j=1

E[xixj ]− µ2 =
1

n2
[(n2 − n)µ2 + n(µ2 + σ2)]− µ2 =

σ2

n
, (38)

where σ2 is the variance of f(x) and we used the fact that E[xixj ] = µ2 for
i ̸= j and E[x2

i ] = µ2 + σ2.
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